Suppr超能文献

时滞偏微分方程系统的指数稳定性分析:应用李雅普诺夫方法和时滞依赖技术。

Exponential stability analysis of delayed partial differential equation systems: Applying the Lyapunov method and delay-dependent techniques.

作者信息

Tian Hao, Basem Ali, Kenjrawy Hassan A, Al-Rubaye Ameer H, Alfalahi Saad T Y, Azarinfar Hossein, Khosravi Mohsen, Xia Xiuyun

机构信息

School of Computer Science and Engineering, Hunan University of Information Technology, Changsha, 410151, China.

Faculty of Engineering, Warith Al-Anbiyaa University, Karbala, 56001, Iraq.

出版信息

Heliyon. 2024 Jun 7;10(12):e32650. doi: 10.1016/j.heliyon.2024.e32650. eCollection 2024 Jun 30.

Abstract

This paper presents an investigation into the stability and control aspects of delayed partial differential equation (PDE) systems utilizing the Lyapunov method. PDEs serve as powerful mathematical tools for modeling diverse and intricate systems such as heat transfer processes, chemical reactors, flexible arms, and population dynamics. However, the presence of delays within the feedback loop of such systems can introduce significant challenges, as even minor delays can potentially trigger system instability. To address this issue, the Lyapunov method, renowned for its efficacy in stability analysis, is employed to assess the exponential stability of a specific cohort of delayed PDE systems. By adopting Dirichlet boundary conditions and incorporating delay-dependent techniques such as the Galerkin method and Halanay inequality, the inherent stability properties of these systems are rigorously examined. Notably, the utilization of Dirichlet boundary conditions in this study allows for simplified analysis, and it is worth mentioning that the stability analysis outcomes under Neumann conditions and combined boundary conditions align with those of the Dirichlet boundary conditions discussed herein. Furthermore, this research endeavor delves into the implications of the obtained results in terms of control considerations and convergence rates. The integration of the Galerkin method aids in approximating the behavior of dominant modes within the system, thereby enabling a more comprehensive understanding of stability and control. The exploration of convergence rates provides valuable insights into the speed at which stability is achieved in practice, thus enhancing the practical applicability of the findings. The outcomes of this study contribute significantly to the broader comprehension and effective control of delayed PDE systems. The elucidation of stability behaviors not only provides a comprehensive understanding of the impact of delays but also offers practical insights for the design and implementation of control strategies in various domains. Ultimately, this research strives to enhance the stability and reliability of complex systems represented by PDEs, thereby facilitating their effective utilization across numerous scientific and engineering applications.

摘要

本文利用李雅普诺夫方法对时滞偏微分方程(PDE)系统的稳定性和控制方面进行了研究。偏微分方程是用于对各种复杂系统建模的强大数学工具,如传热过程、化学反应器、柔性臂和种群动态等。然而,此类系统反馈回路中存在的延迟可能会带来重大挑战,因为即使是微小的延迟也可能引发系统不稳定。为解决这一问题,以其在稳定性分析中的有效性而闻名的李雅普诺夫方法被用于评估特定一类时滞偏微分方程系统的指数稳定性。通过采用狄利克雷边界条件并结合诸如伽辽金方法和哈莱奈不等式等依赖延迟的技术,对这些系统的固有稳定性特性进行了严格研究。值得注意的是,本研究中狄利克雷边界条件的使用使得分析得以简化,并且值得一提的是,诺伊曼条件和组合边界条件下的稳定性分析结果与本文所讨论的狄利克雷边界条件的结果一致。此外,本研究深入探讨了所得结果在控制考虑和收敛速率方面的意义。伽辽金方法的整合有助于近似系统中主导模式的行为,从而能够更全面地理解稳定性和控制。对收敛速率的探索为实际中实现稳定性的速度提供了有价值的见解,从而提高了研究结果的实际适用性。本研究的结果对更广泛地理解和有效控制时滞偏微分方程系统做出了重大贡献。对稳定性行为的阐明不仅提供了对延迟影响的全面理解,还为各个领域控制策略的设计和实施提供了实际见解。最终,本研究致力于提高由偏微分方程表示的复杂系统的稳定性和可靠性,从而促进其在众多科学和工程应用中的有效利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2292/11637217/9b04f54372a3/gr2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验