Suppr超能文献

一种用于各向异性多孔弹性动力学的稳定线性有限元方法及其在心脏灌注中的应用

A stabilized linear finite element method for anisotropic poroelastodynamics with application to cardiac perfusion.

作者信息

Thekkethil Namshad, Rossi Simone, Gao Hao, Richardson Scott I Heath, Griffith Boyce E, Luo Xiaoyu

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.

Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Comput Methods Appl Mech Eng. 2023 Feb 15;405. doi: 10.1016/j.cma.2022.115877. Epub 2023 Jan 7.

Abstract

We propose a variational multiscale method stabilization of a linear finite element method for nonlinear poroelasticity. Our approach is suitable for the implicit time integration of poroelastic formulations in which the solid skeleton is anisotropic and incompressible. A detailed numerical methodology is presented for a monolithic formulation that includes both structural dynamics and Darcy flow. Our implementation of this methodology is verified using several hyperelastic and poroelastic benchmark cases, and excellent agreement is obtained with the literature. Grid convergence studies for both anisotropic hyperelastodynamics and poroelastodynamics demonstrate that the method is second-order accurate. The capabilities of our approach are demonstrated using a model of the left ventricle (LV) of the heart derived from human imaging data. Simulations using this model indicate that the anisotropicity of the myocardium has a substantial influence on the pore pressure. Furthermore, the temporal variations of the various components of the pore pressure (hydrostatic pressure and pressure resulting from changes in the volume of the pore fluid) are correlated with the variation of the added mass and dynamics of the LV, with maximum pore pressure being obtained at peak systole. The order of magnitude and the temporal variation of the pore pressure are in good agreement with the literature.

摘要

我们提出了一种用于非线性多孔弹性问题的线性有限元方法的变分多尺度方法稳定化。我们的方法适用于固体骨架为各向异性且不可压缩的多孔弹性公式的隐式时间积分。针对包含结构动力学和达西流的整体公式,给出了详细的数值方法。我们对该方法的实现通过几个超弹性和多孔弹性基准案例进行了验证,并且与文献结果取得了极好的一致性。各向异性超弹性动力学和多孔弹性动力学的网格收敛性研究表明该方法具有二阶精度。我们使用从人体成像数据得出的心脏左心室(LV)模型展示了该方法的能力。使用该模型进行的模拟表明,心肌的各向异性对孔隙压力有重大影响。此外,孔隙压力各分量(静水压力和因孔隙流体体积变化产生的压力)的时间变化与左心室附加质量和动力学的变化相关,在收缩期峰值时获得最大孔隙压力。孔隙压力的量级和时间变化与文献结果吻合良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3418/10438829/c1c4e140d4f0/nihms-1864973-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验