Suppr超能文献

一种用于模拟心脏灌注和流固耦合的多孔弹性浸入有限元框架。

A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction.

机构信息

School of Mathematics and Statistics, University of Glasgow, Glasgow, UK.

GlaxoSmithKline plc, Stevenage, UK.

出版信息

Int J Numer Method Biomed Eng. 2021 May;37(5):e3446. doi: 10.1002/cnm.3446. Epub 2021 Feb 28.

Abstract

Modern approaches to modelling cardiac perfusion now commonly describe the myocardium using the framework of poroelasticity. Cardiac tissue can be described as a saturated porous medium composed of the pore fluid (blood) and the skeleton (myocytes and collagen scaffold). In previous studies fluid-structure interaction in the heart has been treated in a variety of ways, but in most cases, the myocardium is assumed to be a hyperelastic fibre-reinforced material. Conversely, models that treat the myocardium as a poroelastic material typically neglect interactions between the myocardium and intracardiac blood flow. This work presents a poroelastic immersed finite element framework to model left ventricular dynamics in a three-phase poroelastic system composed of the pore blood fluid, the skeleton, and the chamber fluid. We benchmark our approach by examining a pair of prototypical poroelastic formations using a simple cubic geometry considered in the prior work by Chapelle et al (2010). This cubic model also enables us to compare the differences between system behaviour when using isotropic and anisotropic material models for the skeleton. With this framework, we also simulate the poroelastic dynamics of a three-dimensional left ventricle, in which the myocardium is described by the Holzapfel-Ogden law. Results obtained using the poroelastic model are compared to those of a corresponding hyperelastic model studied previously. We find that the poroelastic LV behaves differently from the hyperelastic LV model. For example, accounting for perfusion results in a smaller diastolic chamber volume, agreeing well with the well-known wall-stiffening effect under perfusion reported previously. Meanwhile differences in systolic function, such as fibre strain in the basal and middle ventricle, are found to be comparatively minor.

摘要

目前,心脏灌注的建模方法通常使用多孔弹性力学框架来描述心肌。心脏组织可以被描述为一种饱和多孔介质,由孔隙流体(血液)和骨架(心肌细胞和胶原支架)组成。在之前的研究中,心脏中的流固耦合已经以各种方式进行了处理,但在大多数情况下,心肌被假设为超弹性纤维增强材料。相反,将心肌视为多孔弹性材料的模型通常忽略了心肌和心内血流之间的相互作用。这项工作提出了一种多孔弹性浸入有限元框架,用于模拟由孔隙血液、骨架和腔室液体组成的三相多孔弹性系统中的左心室动力学。我们通过检查 Chapelle 等人(2010 年)之前工作中考虑的简单立方几何形状的一对原型多孔弹性地层来验证我们的方法。这个立方模型还使我们能够比较当使用各向同性和各向异性骨架材料模型时系统行为的差异。通过这个框架,我们还模拟了三维左心室的多孔弹性动力学,其中心肌由 Holzapfel-Ogden 定律描述。使用多孔弹性模型获得的结果与之前研究的相应超弹性模型的结果进行了比较。我们发现多孔弹性 LV 的行为与超弹性 LV 模型不同。例如,考虑灌注会导致舒张室体积减小,这与之前报道的灌注下众所周知的壁硬化效应非常吻合。同时,在收缩功能方面存在差异,例如基底和中部心室的纤维应变,发现相对较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1292/8274593/83fd546632e3/nihms-1711682-f0012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验