Suppr超能文献

CN32有氧和无氧生长的生物能量学

Bioenergetics of aerobic and anaerobic growth of CN32.

作者信息

Wray Addien C, Gorman-Lewis Drew

机构信息

Earth and Space Sciences, University of Washington, Seattle, WA, United States.

出版信息

Front Microbiol. 2023 Aug 2;14:1234598. doi: 10.3389/fmicb.2023.1234598. eCollection 2023.

Abstract

is a model dissimilatory iron-reducing bacterium that can use Fe(III) and O as terminal electron acceptors. Consequently, it has the ability to influence both aerobic and anaerobic groundwater systems, making it an ideal microorganism for improving our understanding of facultative anaerobes with iron-based metabolism. In this work, we examine the bioenergetics of O and Fe(III) reduction coupled to lactate oxidation in CN32. Bioenergetics were measured directly via isothermal calorimetry and by changes to the chemically defined growth medium. We performed these measurements from 25 to 36°C. Modeling metabolism with macrochemical equations allowed us to define a theoretical growth stoichiometry for the catabolic reaction of 1.00 O:lactate and 1.33 Fe(III):lactate that was consistent with the observed ratios of O:lactate (1.20 ± 0.23) and Fe(III):lactate (1.46 ± 0.15) consumption. Aerobic growth showed minimal variation with temperature and minimal variation in thermodynamic potentials of incubation. Fe(III)-based growth showed a strong temperature dependence. The Gibbs energy and enthalpy of incubation was minimized at ≥30°C. Energy partitioning modeling of Fe(III)-based calorimetric incubation data predicted that energy consumption for non-growth associate maintenance increases substantially above 30°C. This prediction agrees with the data at 33 and 35°C. These results suggest that the effects of temperature on CN32 are metabolism dependent. Gibbs energy of incubation above 30°C was 3-5 times more exergonic with Fe(III)-based growth than with aerobic growth. We compared data gathered in this study with predictions of microbial growth based on standard-state conditions and based on the thermodynamic efficiency of microbial growth. Quantifying the growth requirements of CN32 has advanced our understanding of the thermodynamic constraints of this dissimilatory iron-reducing bacterium.

摘要

是一种典型的异化铁还原细菌,能够利用Fe(III)和O作为末端电子受体。因此,它有能力影响好氧和厌氧地下水系统,使其成为增进我们对具有铁基代谢的兼性厌氧菌理解的理想微生物。在这项工作中,我们研究了CN32中与乳酸氧化耦合的O和Fe(III)还原的生物能量学。通过等温量热法和化学定义生长培养基的变化直接测量生物能量学。我们在25至36°C下进行了这些测量。用宏观化学方程式对代谢进行建模,使我们能够定义1.00 O:乳酸和1.33 Fe(III):乳酸分解代谢反应的理论生长化学计量,这与观察到的O:乳酸(1.20±0.23)和Fe(III):乳酸(1.46±0.15)消耗比率一致。好氧生长随温度变化最小,培养的热力学势变化也最小。基于Fe(III)的生长表现出强烈的温度依赖性。在≥30°C时,培养的吉布斯自由能和焓最小化。基于Fe(III)的量热培养数据的能量分配模型预测,非生长相关维持的能量消耗在30°C以上会大幅增加。这一预测与33°C和35°C的数据一致。这些结果表明温度对CN32的影响取决于代谢。与好氧生长相比,基于Fe(III)的生长在30°C以上时培养的吉布斯自由能的放能程度高3至5倍。我们将本研究中收集的数据与基于标准状态条件和基于微生物生长的热力学效率的微生物生长预测进行了比较。量化CN32的生长需求增进了我们对这种异化铁还原细菌的热力学限制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c0/10433392/38d5e93b5b30/fmicb-14-1234598-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验