Suppr超能文献

乳酸钠通过三组分调控系统(LrbS-LrbA-LrbR)负调控腐败希瓦氏菌CN32生物膜的形成。

Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR).

作者信息

Liu Cong, Yang Jinshui, Liu Liang, Li Baozhen, Yuan Hongli, Liu Weijie

机构信息

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China

出版信息

Appl Environ Microbiol. 2017 Jun 30;83(14). doi: 10.1128/AEM.00712-17. Print 2017 Jul 15.

Abstract

The capability of biofilm formation has a major impact on the industrial and biotechnological applications of CN32. However, the detailed regulatory mechanisms underlying biofilm formation in this strain remain largely unknown. In the present report, we describe a three-component regulatory system which negatively regulates the biofilm formation of CN32. This system consists of a histidine kinase LrbS (Sputcn32_0303) and two cognate response regulators, including a transcription factor, LrbA (Sputcn32_0304), and a phosphodiesterase, LrbR (Sputcn32_0305). LrbS responds to the signal of the carbon source sodium lactate and subsequently activates LrbA. The activated LrbA then promotes the expression of , the gene for the other response regulator. The bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) phosphodiesterase LrbR, containing an EAL domain, decreases the concentration of intracellular c-di-GMP, thereby negatively regulating biofilm formation. In summary, the carbon source sodium lactate acts as a signal molecule that regulates biofilm formation via a three-component regulatory system (LrbS-LrbA-LrbR) in CN32. Biofilm formation is a significant capability used by some bacteria to survive in adverse environments. Numerous environmental factors can affect biofilm formation through different signal transduction pathways. Carbon sources are critical nutrients for bacterial growth, and their concentrations and types significantly influence the biomass and structure of biofilms. However, knowledge about the underlying mechanism of biofilm formation regulation by carbon source is still limited. This work elucidates a modulation pattern of biofilm formation negatively regulated by sodium lactate as a carbon source via a three-component regulatory system in CN32, which may serve as a good example for studying how the carbon sources impact biofilm development in other bacteria.

摘要

生物膜形成能力对CN32的工业和生物技术应用有重大影响。然而,该菌株中生物膜形成的详细调控机制仍 largely未知。在本报告中,我们描述了一个负调控CN32生物膜形成的三组分调控系统。该系统由一个组氨酸激酶LrbS(Sputcn32_0303)和两个同源应答调节因子组成,包括一个转录因子LrbA(Sputcn32_0304)和一个磷酸二酯酶LrbR(Sputcn32_0305)。LrbS对碳源乳酸钠的信号作出反应,随后激活LrbA。被激活的LrbA然后促进另一个应答调节因子的基因的表达。含有EAL结构域的双(3'-5')-环二聚体GMP(c-di-GMP)磷酸二酯酶LrbR降低细胞内c-di-GMP的浓度,从而负调控生物膜形成。总之,碳源乳酸钠作为信号分子,通过CN32中的三组分调控系统(LrbS-LrbA-LrbR)调节生物膜形成。生物膜形成是一些细菌在不利环境中生存所使用的一种重要能力。许多环境因素可通过不同的信号转导途径影响生物膜形成。碳源是细菌生长的关键营养物质,其浓度和类型显著影响生物膜的生物量和结构。然而,关于碳源调控生物膜形成的潜在机制的知识仍然有限。这项工作阐明了乳酸钠作为碳源通过CN32中的三组分调控系统负调控生物膜形成的一种调节模式,这可能为研究碳源如何影响其他细菌中的生物膜发育提供一个很好的例子。

相似文献

引用本文的文献

3
The global regulation of c-di-GMP and cAMP in bacteria.细菌中c-di-GMP和cAMP的全局调控
mLife. 2024 Mar 11;3(1):42-56. doi: 10.1002/mlf2.12104. eCollection 2024 Mar.
6
RclS Sensor Kinase Modulates Virulence of .RclS 传感器激酶调节 的毒力。
Int J Mol Sci. 2022 Jul 26;23(15):8232. doi: 10.3390/ijms23158232.
9
L-Arabinose Transport and Metabolism in Influences Biofilm Formation.L-阿拉伯糖转运和代谢对生物膜形成的影响。
Front Cell Infect Microbiol. 2021 Jul 22;11:698146. doi: 10.3389/fcimb.2021.698146. eCollection 2021.

本文引用的文献

3
Biofilms: an emergent form of bacterial life.生物膜:细菌的一种新兴生命形式。
Nat Rev Microbiol. 2016 Aug 11;14(9):563-75. doi: 10.1038/nrmicro.2016.94.
6
Cyclic diguanylate signaling in Gram-positive bacteria.革兰氏阳性菌中的环二鸟苷酸信号传导
FEMS Microbiol Rev. 2016 Sep;40(5):753-73. doi: 10.1093/femsre/fuw013. Epub 2016 Jun 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验