Suppr超能文献

使用机器学习预测心室颤动时心率变异性数据的最佳长度和预测时间

Optimal Length of Heart Rate Variability Data and Forecasting Time for Ventricular Fibrillation Prediction Using Machine Learning.

作者信息

Jeong Da Un, Taye Getu Tadele, Hwang Han-Jeong, Lim Ki Moo

机构信息

Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.

Health Informatics Units, School of Public Health, Mekelle University, Mekelle, Ethiopia.

出版信息

Comput Math Methods Med. 2021 Mar 16;2021:6663996. doi: 10.1155/2021/6663996. eCollection 2021.

Abstract

Ventricular fibrillation (VF) is a cardiovascular disease that is one of the major causes of mortality worldwide, according to the World Health Organization. Heart rate variability (HRV) is a biomarker that is used for detecting and predicting life-threatening arrhythmias. Predicting the occurrence of VF in advance is important for saving patients from sudden death. We extracted features from seven HRV data lengths to predict the onset of VF before nine different forecast times and observed the prediction accuracies. By using only five features, an artificial neural network classifier was trained and validated based on 10-fold cross-validation. Maximum prediction accuracies of 88.18% and 88.64% were observed at HRV data lengths of 10 and 20 s, respectively, at a forecast time of 0 s. The worst prediction accuracy was recorded at an HRV data length of 70 s and a forecast time of 80 s. Our results showed that features extracted from HRV signals near the VF onset could yield relatively high VF prediction accuracies.

摘要

根据世界卫生组织的数据,心室颤动(VF)是一种心血管疾病,是全球主要的死亡原因之一。心率变异性(HRV)是一种用于检测和预测危及生命的心律失常的生物标志物。提前预测VF的发生对于挽救患者免于猝死至关重要。我们从七种HRV数据长度中提取特征,以在九个不同的预测时间之前预测VF的发作,并观察预测准确性。通过仅使用五个特征,基于10折交叉验证训练并验证了人工神经网络分类器。在预测时间为0秒时,分别在HRV数据长度为10秒和20秒时观察到最大预测准确率为88.18%和88.64%。最差的预测准确率记录在HRV数据长度为70秒和预测时间为80秒时。我们的结果表明,从VF发作附近的HRV信号中提取的特征可以产生相对较高的VF预测准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8772/10435312/64de3f3b0f22/CMMM2021-6663996.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验