Ohta M, Uchino E
J Acoust Soc Am. 1986 Sep;80(3):804-12. doi: 10.1121/1.393955.
This article describes a new attempt at the design of a general digital filter for the state estimation of a nonstationary nonlinear stochastic sound system. A recursive algorithm for estimating the higher-order statistics of arbitrary-function type, mean, and variance is obtained by introducing a new expansion form of Bayes' theorem. Further, the state probability density function (PDF) can also be estimated in a unified form of orthogonal or nonorthogonal series expansions by using these estimates. This method is widely applicable for cases where the random-noise fluctuation is non-Gaussian. The estimation algorithm proposed in this article agrees completely with a well-known Kalman filtering theory [J. Basic Eng. 82, 35-45 (1960); Kalman and Buchy, J. Basic Eng. 83, 95-108 (1961)], as a simplified special case when the stochastic system is of linear type with Gaussian random excitation. The validity and effectiveness of the proposed theory were confirmed experimentally by applying it to actually observed room acoustic data and road-traffic noise data.
本文描述了一种针对非平稳非线性随机声音系统状态估计设计通用数字滤波器的新尝试。通过引入贝叶斯定理的一种新展开形式,获得了一种用于估计任意函数类型的高阶统计量、均值和方差的递归算法。此外,利用这些估计值,还可以通过正交或非正交级数展开的统一形式来估计状态概率密度函数(PDF)。该方法广泛适用于随机噪声波动为非高斯分布的情况。本文提出的估计算法与著名的卡尔曼滤波理论[《基础工程杂志》82卷,第35 - 45页(1960年);卡尔曼和布希,《基础工程杂志》83卷,第95 - 108页(1961年)]完全一致,当随机系统为具有高斯随机激励的线性类型时,它是该理论的一种简化特殊情况。通过将该理论应用于实际观测的室内声学数据和道路交通噪声数据,实验证实了所提理论的有效性和实用性。