Ghosh Atish, Goswami Biplab, Pal Sougata, Sarkar Pranab
Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
Department of Physics, Sreegopal Banerjee College, Bagati, Hoogly 712148, India.
J Phys Chem Lett. 2023 Aug 31;14(34):7672-7679. doi: 10.1021/acs.jpclett.3c01626. Epub 2023 Aug 21.
Here, we perform a time domain density functional study in conjunction with a non-adiabatic molecular dynamics (NAMD) simulation to investigate the charge carrier dynamics in a series of van der Waals heterostructures made of two-dimensional (2D) SnX (X = S or Se)-supported ZrS, ZrSe, and ZrSSe monolayers. Results from NAMD simulation reveal delayed electron-hole recombination (in the range of 0.53-2.13 ns) and ultrafast electron/hole transfer processes (electron transfer within 108.3-321.5 fs and hole transfer between 107.6 and 258.8 fs). The most interesting finding of our study is that switching from AB to AA stacking in the heterostructures extends the carrier lifespan by a significant amount. The delayed electron-hole recombination because of the switching stacking pattern can be rationalized by weak electron-phonon coupling, lower non-adiabatic coupling (NAC), and fast decoherence time. Thus, these insightful NAMD studies of excited charge carriers reveal that the stacking pattern variation is an effective tool to develop efficient photovoltaic devices based on 2D van der Waals heterostructures.
在此,我们结合非绝热分子动力学(NAMD)模拟进行时域密度泛函研究,以探究由二维(2D)SnX(X = S或Se)支撑的ZrS、ZrSe和ZrSSe单层构成的一系列范德华异质结构中的电荷载流子动力学。NAMD模拟结果显示电子 - 空穴复合延迟(在0.53 - 2.13纳秒范围内)以及超快电子/空穴转移过程(电子转移在108.3 - 321.5飞秒内,空穴转移在107.6和258.8飞秒之间)。我们研究中最有趣的发现是,在异质结构中从AB堆叠切换到AA堆叠可显著延长载流子寿命。由于堆叠模式切换导致的电子 - 空穴复合延迟可通过弱电子 - 声子耦合、较低的非绝热耦合(NAC)和快速退相干时间来解释。因此,这些关于激发电荷载流子的深入NAMD研究表明,堆叠模式变化是开发基于二维范德华异质结构的高效光伏器件的有效工具。