Park Tae Gwan, Choi Byoung Ki, Park Junho, Kim Jungdae, Chang Young Jun, Rotermund Fabian
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Department of Physics, University of Seoul, Seoul 02504, Republic of Korea.
ACS Nano. 2021 Apr 27;15(4):7756-7764. doi: 10.1021/acsnano.1c01723. Epub 2021 Mar 24.
Atomically thin vanadium diselenide (VSe) is a two-dimensional transition metal dichalcogenide exhibiting attractive properties due to its metallic 1T phase. With the recent development of methods to manufacture high-quality monolayer VSe on van der Waals materials, the outstanding properties of VSe-based heterostructures have been widely studied for diverse applications. Dimensional reduction and interlayer coupling with a van der Waals substrate lead to its distinguishable characteristics from its bulk counterparts. However, only a few fundamental studies have investigated the interlayer coupling effects and hot electron transfer dynamics in VSe heterostructures. In this work, we reveal ultrafast and efficient interlayer hot electron transfer and interlayer coupling effects in VSe/graphene heterostructures. Femtosecond time-resolved reflectivity measurements showed that hot electrons in VSe were transferred to graphene within a 100 fs time scale with high efficiency. Besides, coherent acoustic phonon dynamics indicated interlayer coupling in VSe/graphene heterostructures and efficient thermal energy transfer to three-dimensional substrates. Our results provide valuable insights into the intriguing properties of metallic transition metal dichalcogenide heterostructures and motivate designing optoelectronic and photonic devices with tailored properties.
原子级薄的二硒化钒(VSe₂)是一种二维过渡金属二硫属化物,由于其金属性的1T相而展现出引人注目的特性。随着近期在范德华材料上制造高质量单层VSe₂方法的发展,基于VSe₂的异质结构的优异特性已被广泛研究用于各种应用。维度降低以及与范德华衬底的层间耦合导致其与体相材料相比具有显著特征。然而,仅有少数基础研究探究了VSe₂异质结构中的层间耦合效应和热电子转移动力学。在这项工作中,我们揭示了VSe₂/石墨烯异质结构中超快且高效的层间热电子转移和层间耦合效应。飞秒时间分辨反射率测量表明,VSe₂中的热电子在100飞秒时间尺度内高效转移至石墨烯。此外,相干声子动力学表明VSe₂/石墨烯异质结构中的层间耦合以及向三维衬底的高效热能转移。我们的结果为金属过渡金属二硫属化物异质结构的有趣特性提供了有价值的见解,并推动了具有定制特性的光电器件和光子器件的设计。