Suppr超能文献

基于非线性光学散斑场的接收场解决分类任务。

Solving classification tasks by a receptron based on nonlinear optical speckle fields.

机构信息

CIMAINA and Dipartimento di Fisica, Università degli Studi di Milano, via G. Celoria 16, 20133, Milan, Italy.

出版信息

Neural Netw. 2023 Sep;166:634-644. doi: 10.1016/j.neunet.2023.08.001. Epub 2023 Aug 9.

Abstract

Among several approaches to tackle the problem of energy consumption in modern computing systems, two solutions are currently investigated: one consists of artificial neural networks (ANNs) based on photonic technologies, the other is a different paradigm compared to ANNs and it is based on random networks of non-linear nanoscale junctions resulting from the assembling of nanoparticles or nanowires as substrates for neuromorphic computing. These networks show the presence of emergent complexity and collective phenomena in analogy with biological neural networks characterized by self-organization, redundancy, and non-linearity. Starting from this background, we propose and formalize a generalization of the perceptron model to describe a classification device based on a network of interacting units where the input weights are non-linearly dependent. We show that this model, called "receptron", provides substantial advantages compared to the perceptron as, for example, the solution of non-linearly separable Boolean functions with a single device. The receptron model is used as a starting point for the implementation of an all-optical device that exploits the non-linearity of optical speckle fields produced by a solid scatterer. By encoding these speckle fields we generated a large variety of target Boolean functions. We demonstrate that by properly setting the model parameters, different classes of functions with different multiplicity can be solved efficiently. The optical implementation of the receptron scheme opens the way for the fabrication of a completely new class of optical devices for neuromorphic data processing based on a very simple hardware.

摘要

在解决现代计算系统能源消耗问题的几种方法中,目前正在研究两种解决方案:一种是基于光子技术的人工神经网络 (ANNs),另一种是与 ANNs 不同的范例,它基于由纳米粒子或纳米线组装作为神经形态计算基板的非线性纳米级结的随机网络。这些网络表现出与生物神经网络类似的涌现复杂性和集体现象,生物神经网络具有自组织、冗余和非线性的特点。基于此背景,我们提出并形式化了一种感知机模型的推广,以描述一种基于相互作用单元网络的分类设备,其中输入权重是非线性相关的。我们表明,这种称为“receptron”的模型与感知机相比具有实质性的优势,例如,它可以使用单个设备解决非线性可分的布尔函数。receptron 模型被用作实现全光设备的起点,该设备利用由固体散射体产生的光斑点场的非线性。通过对这些斑点场进行编码,我们生成了大量目标布尔函数。我们证明,通过正确设置模型参数,可以有效地解决不同多重性的不同类别的函数。receptron 方案的光学实现为制造基于非常简单硬件的新型神经形态数据处理光学器件开辟了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验