Suppr超能文献

类脑硬件,我们需要它吗?

Brain-like hardware, do we need it?

作者信息

Borghi Francesca, Nieus Thierry R, Galli Davide E, Milani Paolo

机构信息

CIMAINA and Dipartimento di Fisica "A. Pontremoli", Università degli Studi di Milano, Milan, Italy.

Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.

出版信息

Front Neurosci. 2024 Dec 16;18:1465789. doi: 10.3389/fnins.2024.1465789. eCollection 2024.

Abstract

The brain's ability to perform efficient and fault-tolerant data processing is strongly related to its peculiar interconnected adaptive architecture, based on redundant neural circuits interacting at different scales. By emulating the brain's processing and learning mechanisms, computing technologies strive to achieve higher levels of energy efficiency and computational performance. Although efforts to address neuromorphic solutions through hardware based on top-down CMOS-based technologies have obtained interesting results in terms of energetic efficiency improvement, the replication of brain's self-assembled and redundant architectures is not considered in the roadmaps of data processing electronics. The exploration of solutions based on self-assembled elemental blocks to mimic biological networks' complexity is explored in the general frame of unconventional computing and it has not reached yet a maturity stage enabling a benchmark with standard electronic approaches in terms of performances, compatibility and scalability. Here we discuss some aspects related to advantages and disadvantages in the emulation of the brain for neuromorphic hardware. We also discuss possible directions in terms of hybrid hardware solutions where self-assembled substrates coexist and integrate with conventional electronics in view of neuromorphic architectures.

摘要

大脑执行高效且容错的数据处理的能力与其独特的相互连接的自适应架构密切相关,该架构基于在不同尺度上相互作用的冗余神经回路。通过模拟大脑的处理和学习机制,计算技术努力实现更高水平的能源效率和计算性能。尽管通过基于自上而下的CMOS技术的硬件来解决神经形态解决方案的努力在提高能量效率方面取得了有趣的成果,但在数据处理电子学的路线图中并未考虑复制大脑的自组装和冗余架构。在非常规计算的总体框架内探索了基于自组装元素块来模拟生物网络复杂性的解决方案,但尚未达到能够在性能、兼容性和可扩展性方面与标准电子方法进行基准比较的成熟阶段。在这里,我们讨论与神经形态硬件模拟大脑相关的优缺点的一些方面。我们还讨论了在混合硬件解决方案方面的可能方向,鉴于神经形态架构,自组装基板与传统电子器件共存并集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1484/11685757/4c0b1f765ed0/fnins-18-1465789-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验