Suppr超能文献

基于模糊熵特征选择和最优分类器的心电图形态心律失常分类

Electrocardiogram morphological arrhythmia classification using fuzzy entropy-based feature selection and optimal classifier.

作者信息

Chaubey Krishnakant, Saha Seemanti

机构信息

Department of Electronics & Communication Engineering, National Institute of Technology Patna, Ashok Raj Path, Patna, 800005, Bihar, India.

出版信息

Biomed Phys Eng Express. 2023 Oct 10;9(6). doi: 10.1088/2057-1976/acf222.

Abstract

Electrocardiogram (ECG) signal analysis has become significant in recent years as cardiac arrhythmia shares a major portion of all mortality worldwide. To detect these arrhythmias, computer-assisted algorithms play a pivotal role as beat-by-beat monitoring of holter ECG signals is required. In this paper, a morphological arrhythmia classification algorithm has been proposed to classify seven different ECG beats, namely Normal Beat (N), Left Bundle Branch Block Beat (L), Right Bundle Branch Block Beat (R), Atrial Premature Contraction Beat (A), Premature Ventricular Contraction Beat (V), Fusion of Normal and Ventricle Beat (F) and Pace Beat (P). A novel feature set of 25 attributes has been extracted from each ECG beat and ranked using the Fuzzy Entropy-based feature selection (FEBFS) technique. In addition, two distinct classifiers, support vector machine with radial basis function as the kernel (SVM-RBF) and weighted K-nearest neighbor (WKNN), are used to categorize ECG beats, and their performances are also evaluated after adjusting vital parameters. The performance of classifiers is compared for four different ECG beat segmentation approaches and further analyzed using three similarity measurement techniques and two fuzzy entropy methods while feature selection. The classifier results are also cross-validated using a 10-fold cross-validation scheme, and the MIT-BIH Arrhythmia Database has been used to validate the proposed work. After selecting 21 highly ranked features, WKNN achieves the best results with the nearest neighbor value K = 3 and cityblock distance metrics, with Average Sensitivity (Sen) = 94.89%, Positive Predictivity (Ppre) = 97.13%, Specificity (Spe) = 99.72%, F1 Score = 95.95%, and Overall Accuracy (Acc) = 99.15%. The novelty of this work relies on formulating a unique feature set, including proposed symbolic features, followed by the FEBFS technique making this algorithm efficient and reliable for morphological arrhythmia classification. The above results demonstrate that the proposed algorithm performs better than many existing state-of-the-art works.

摘要

近年来,由于心律失常在全球所有死亡率中占很大比例,心电图(ECG)信号分析变得至关重要。为了检测这些心律失常,计算机辅助算法起着关键作用,因为需要对动态心电图信号进行逐搏监测。本文提出了一种形态学心律失常分类算法,用于对七种不同的心电图搏动进行分类,即正常搏动(N)、左束支传导阻滞搏动(L)、右束支传导阻滞搏动(R)、房性早搏搏动(A)、室性早搏搏动(V)、正常与心室搏动融合(F)以及起搏搏动(P)。从每个心电图搏动中提取了一组由25个属性组成的新颖特征集,并使用基于模糊熵的特征选择(FEBFS)技术进行排序。此外,使用了两种不同的分类器,即内核为径向基函数的支持向量机(SVM-RBF)和加权K近邻(WKNN)来对心电图搏动进行分类,并在调整重要参数后评估它们的性能。比较了四种不同的心电图搏动分割方法下分类器的性能,并在特征选择时使用三种相似性测量技术和两种模糊熵方法进行进一步分析。分类器结果还使用10折交叉验证方案进行交叉验证,并使用麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(MIT-BIH Arrhythmia Database)来验证所提出的工作。在选择了21个排名靠前的特征后,WKNN在最近邻值K = 3和街区距离度量下取得了最佳结果,平均灵敏度(Sen)= 94.89%,阳性预测值(Ppre)= 97.13%,特异性(Spe)= 99.72%,F1分数 = 95.95%,总体准确率(Acc)= 99.15%。这项工作的新颖之处在于制定了一个独特的特征集,包括提出的符号特征,随后采用FEBFS技术,使该算法对于形态学心律失常分类高效且可靠。上述结果表明,所提出的算法比许多现有的先进工作表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验