Université de Toulouse III-Paul Sabatier, 31062 Toulouse, France.
Université de Toulouse III-Paul Sabatier, 31062 Toulouse, France
J Neurosci. 2023 Sep 27;43(39):6667-6678. doi: 10.1523/JNEUROSCI.0051-23.2023. Epub 2023 Aug 21.
Rhythmic entrainment echoes-rhythmic brain responses that outlast rhythmic stimulation-can demonstrate endogenous neural oscillations entrained by the stimulus rhythm. Here, we tested for such echoes in auditory perception. Participants detected a pure tone target, presented at a variable delay after another pure tone that was rhythmically modulated in amplitude. In four experiments involving 154 human (female and male) participants, we tested (1) which stimulus rate produces the strongest entrainment echo and, inspired by the tonotopical organization of the auditory system and findings in nonhuman primates, (2) whether these are organized according to sound frequency. We found the strongest entrainment echoes after 6 and 8 Hz stimulation, respectively. The best moments for target detection (in phase or antiphase with the preceding rhythm) depended on whether sound frequencies of entraining and target stimuli matched, which is in line with a tonotopical organization. However, for the same experimental condition, best moments were not always consistent across experiments. We provide a speculative explanation for these differences that relies on the notion that neural entrainment and repetition-related adaptation might exercise competing opposite influences on perception. Together, we find rhythmic echoes in auditory perception that seem more complex than those predicted from initial theories of neural entrainment. Rhythmic entrainment echoes are rhythmic brain responses that are produced by a rhythmic stimulus and persist after its offset. These echoes play an important role for the identification of endogenous brain oscillations, entrained by rhythmic stimulation, and give us insights into whether and how participants predict the timing of events. In four independent experiments involving >150 participants, we examined entrainment echoes in auditory perception. We found that entrainment echoes have a preferred rate (between 6 and 8 Hz) and seem to follow the tonotopic organization of the auditory system. Although speculative, we also found evidence that several, potentially competing processes might interact to produce such echoes, a notion that might need to be considered for future experimental design.
节律性回声是指在刺激结束后仍能持续的节律性脑反应,可以证明刺激节律会使内源性神经振荡同步。在这里,我们测试了听觉感知中的这种回声。参与者检测到一个纯音目标,该目标在另一个纯音呈现后以可变的延迟出现,该纯音的幅度呈节律性调制。在四个涉及 154 名人类(女性和男性)参与者的实验中,我们测试了以下内容:(1)哪种刺激率会产生最强的同步回声;(2)受听觉系统的音调组织和非人类灵长类动物研究结果的启发,这些回声是否是按照声音频率组织的。我们发现,在分别以 6 Hz 和 8 Hz 的刺激率进行刺激时,会产生最强的同步回声。目标检测的最佳时刻(与前一个节律同相或反相)取决于同步和目标刺激的声音频率是否匹配,这与音调组织一致。然而,对于相同的实验条件,最佳时刻在不同的实验中并不总是一致的。我们对这些差异提出了一种推测性的解释,该解释依赖于这样一种观点,即神经同步和与重复相关的适应可能对感知产生相互竞争的相反影响。总的来说,我们在听觉感知中发现了比最初的神经同步理论所预测的更为复杂的节律性回声。节律性回声是由节律性刺激产生的节律性脑反应,在刺激结束后仍然存在。这些回声对于识别受节律性刺激同步的内源性脑振荡以及了解参与者是否以及如何预测事件的时间具有重要作用。在四个独立的涉及 150 多名参与者的实验中,我们检查了听觉感知中的同步回声。我们发现,同步回声具有一个优选的速率(在 6 Hz 和 8 Hz 之间),并且似乎遵循听觉系统的音调组织。尽管这只是一种推测,但我们也发现了一些潜在的竞争过程可能相互作用产生这种回声的证据,这一概念可能需要在未来的实验设计中加以考虑。