文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于与氧化应激和磷脂代谢相关的基因的多组学分析揭示了胰腺癌的内在分子特征。

Multi-omics analyses based on genes associated with oxidative stress and phospholipid metabolism revealed the intrinsic molecular characteristics of pancreatic cancer.

机构信息

Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.

Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.

出版信息

Sci Rep. 2023 Aug 21;13(1):13564. doi: 10.1038/s41598-023-40560-4.


DOI:10.1038/s41598-023-40560-4
PMID:37604837
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10442332/
Abstract

Oxidative stress (OS), which impacts lipid metabolic reprogramming, can affect the biological activities of cancer cells. How oxidative stress and phospholipid metabolism (OSPM) influence the prognosis of pancreatic cancer (PC) needs to be elucidated. The metabolic data of 35 pancreatic tumor samples, 34 para-carcinoma samples, and 31 normal pancreatic tissues were obtained from the previously published literature. Pan-cancer samples were obtained from The Cancer Genome Atlas (TCGA). And the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), ArrayExpress, and the Genotype-Tissue Expression (GTEx) databases were searched for more PC and normal pancreatic samples. The metabolites in PC were compared with normal and para-carcinoma tissues. The characteristics of the key OSPM genes were summarized in pan-cancer. The random survival forest analysis and multivariate Cox regression analysis were utilized to construct an OSPM-related signature. Based on this signature, PC samples were divided into high- and low-risk subgroups. The dysregulations of the tumor immune microenvironment were further investigated. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was conducted to investigate the expression of genes in the signature in PC and normal tissues. The protein levels of these genes were further demonstrated. In PC, metabolomic studies revealed the alteration of PM, while transcriptomic studies showed different expressions of OSPM-related genes. Then 930 PC samples were divided into three subtypes with different prognoses, and an OSPM-related signature including eight OSPM-related genes (i.e., SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, ECT2, SLC22A3, and FGD6) was developed. High- and low-risk subgroups divided by the signature showed different prognoses, expression levels of immune checkpoint genes, immune cell infiltration, and tumor microenvironment. The risk score was negatively correlated with the proportion of TIL, pDC, Mast cell, and T cell co-stimulation. The expression levels of genes in the signature were verified in PC and normal samples. The protein levels of SLC2A1, MMP14, TOP2A, MBOAT2, ANLN, and SLC22A3 showed up-regulation in PC samples compared with normal tissues. After integrating metabolomics and transcriptomics data, the alterations in OSPM in PC were investigated, and an OSPM-related signature was developed, which was helpful for the prognostic assessment and individualized treatment for PC.

摘要

氧化应激(OS)影响脂质代谢重编程,从而影响癌细胞的生物活性。需要阐明氧化应激和磷脂代谢(OSPM)如何影响胰腺癌(PC)的预后。从之前发表的文献中获得了 35 个胰腺肿瘤样本、34 个癌旁样本和 31 个正常胰腺组织的代谢数据。泛癌样本来自癌症基因组图谱(TCGA)。还从基因表达综合(GEO)、国际癌症基因组联盟(ICGC)、ArrayExpress 和基因型-组织表达(GTEx)数据库中搜索了更多的 PC 和正常胰腺样本。比较了 PC 中的代谢物与正常和癌旁组织。总结了泛癌中关键 OSPM 基因的特征。随机生存森林分析和多变量 Cox 回归分析用于构建 OSPM 相关特征。基于该特征,将 PC 样本分为高风险和低风险亚组。进一步研究了肿瘤免疫微环境的失调情况。进行了定量逆转录聚合酶链反应(qRT-PCR)以研究特征中基因在 PC 和正常组织中的表达。进一步验证了这些基因的蛋白水平。在 PC 中,代谢组学研究揭示了 PM 的改变,而转录组学研究显示了 OSPM 相关基因的不同表达。然后将 930 个 PC 样本分为三种具有不同预后的亚型,并开发了包括 8 个 OSPM 相关基因(即 SLC2A1、MMP14、TOP2A、MBOAT2、ANLN、ECT2、SLC22A3 和 FGD6)的 OSPM 相关特征。由特征划分的高风险和低风险亚组显示出不同的预后、免疫检查点基因的表达水平、免疫细胞浸润和肿瘤微环境。风险评分与 TIL、pDC、Mast cell 和 T 细胞共刺激的比例呈负相关。在 PC 和正常样本中验证了特征中基因的表达水平。与正常组织相比,PC 样本中 SLC2A1、MMP14、TOP2A、MBOAT2、ANLN 和 SLC22A3 的基因表达水平上调。整合代谢组学和转录组学数据后,研究了 PC 中 OSPM 的变化,并开发了 OSPM 相关特征,有助于 PC 的预后评估和个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/b8bbbb50a118/41598_2023_40560_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/dd12f08f0a31/41598_2023_40560_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/a1eadd8a55ce/41598_2023_40560_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/7a339b7fe535/41598_2023_40560_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/49dec3fdd776/41598_2023_40560_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/8dbfc9d915ec/41598_2023_40560_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/d1eb37fd60ca/41598_2023_40560_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/5180c2a22723/41598_2023_40560_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/0f9459b81c87/41598_2023_40560_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/b8bbbb50a118/41598_2023_40560_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/dd12f08f0a31/41598_2023_40560_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/a1eadd8a55ce/41598_2023_40560_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/7a339b7fe535/41598_2023_40560_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/49dec3fdd776/41598_2023_40560_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/8dbfc9d915ec/41598_2023_40560_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/d1eb37fd60ca/41598_2023_40560_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/5180c2a22723/41598_2023_40560_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/0f9459b81c87/41598_2023_40560_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5553/10442332/b8bbbb50a118/41598_2023_40560_Fig9_HTML.jpg

相似文献

[1]
Multi-omics analyses based on genes associated with oxidative stress and phospholipid metabolism revealed the intrinsic molecular characteristics of pancreatic cancer.

Sci Rep. 2023-8-21

[2]
Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes.

Front Endocrinol (Lausanne). 2023

[3]
LDHA is a prognostic biomarker on the immune response in pancreatic adenocarcinoma and associated with m6A modification.

J Cancer Res Clin Oncol. 2023-7

[4]
A novel signature incorporating lipid metabolism- and immune-related genes to predict the prognosis and immune landscape in hepatocellular carcinoma.

Front Oncol. 2023-6-6

[5]
M2-phenotype tumour-associated macrophages upregulate the expression of prognostic predictors MMP14 and INHBA in pancreatic cancer.

J Cell Mol Med. 2022-3

[6]
Characterization of anoikis-based molecular heterogeneity in pancreatic cancer and pancreatic neuroendocrine tumor and its association with tumor immune microenvironment and metabolic remodeling.

Front Endocrinol (Lausanne). 2023

[7]
Comprehensive pan-cancer analysis of role of GPRASP1, associated with clinical outcomes, immune microenvironment, and immunotherapeutic efficiency in pancreatic cancer.

Pathol Res Pract. 2023-3

[8]
Characterizing the key genes of COVID-19 that regulate tumor immune microenvironment and prognosis in hepatocellular carcinoma.

Funct Integr Genomics. 2023-8-4

[9]
Development and Validation of an Inflammatory Response-Related Gene Signature for Predicting the Prognosis of Pancreatic Adenocarcinoma.

Inflammation. 2022-8

[10]
Identifying and Validating an Acidosis-Related Signature Associated with Prognosis and Tumor Immune Infiltration Characteristics in Pancreatic Carcinoma.

J Immunol Res. 2021

引用本文的文献

[1]
Oxidative Stress: Signaling Pathways, Biological Functions, and Disease.

MedComm (2020). 2025-7-1

[2]
Pancreatic cancer subtyping - the keystone of precision treatment.

Front Immunol. 2025-4-8

[3]
Pan-cancer analysis predicts MBOAT2 as a potential new ferroptosis related gene immune checkpoint.

Discov Oncol. 2025-3-15

[4]
Role of ACSL4 in modulating farnesoid X receptor expression and M2 macrophage polarization in HBV-induced hepatocellular carcinoma.

MedComm (2020). 2024-9-12

[5]
Comprehensive multi-omics profiling identifies novel molecular subtypes of pancreatic ductal adenocarcinoma.

Genes Dis. 2023-10-14

本文引用的文献

[1]
Integrating multiple machine learning methods to construct glutamine metabolism-related signatures in lung adenocarcinoma.

Front Endocrinol (Lausanne). 2023

[2]
Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes.

Front Endocrinol (Lausanne). 2023

[3]
The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer.

Mol Cancer. 2023-5-20

[4]
T-cell exhaustion signatures characterize the immune landscape and predict HCC prognosis integrating single-cell RNA-seq and bulk RNA-sequencing.

Front Immunol. 2023

[5]
Circadian rhythm-related genes index: A predictor for HNSCC prognosis, immunotherapy efficacy, and chemosensitivity.

Front Immunol. 2023

[6]
Identification and characterization of a novel molecular classification incorporating oxidative stress and metabolism-related genes for stomach adenocarcinoma in the framework of predictive, preventive, and personalized medicine.

Front Endocrinol (Lausanne). 2023

[7]
Integrating single-cell RNA-seq and bulk RNA-seq to construct prognostic signatures to explore the role of glutamine metabolism in breast cancer.

Front Endocrinol (Lausanne). 2023

[8]
Characterization of neuroendocrine regulation- and metabolism-associated molecular features and prognostic indicators with aid to clinical chemotherapy and immunotherapy of patients with pancreatic cancer.

Front Endocrinol (Lausanne). 2022

[9]
Machine learning to construct sphingolipid metabolism genes signature to characterize the immune landscape and prognosis of patients with uveal melanoma.

Front Endocrinol (Lausanne). 2022

[10]
Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索