Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
Analytical Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan.
Mol Pharm. 2023 Sep 4;20(9):4729-4742. doi: 10.1021/acs.molpharmaceut.3c00477. Epub 2023 Aug 22.
H NMR relaxometry was applied for molecular-level structural analysis of siRNA-loaded lipid nanoparticles (LNPs) to clarify the impact of the neutral lipids, 1,2-distearoyl--glycero-3-phosphocholine (DSPC) and cholesterol, on the physicochemical properties of LNP. Incorporating DSPC and cholesterol in ionizable lipid-based LNP decreased the molecular mobility of ionizable lipids. DSPC reduced the overall molecular mobility of ionizable lipids, while cholesterol specifically decreased the mobility of the hydrophobic tails of ionizable lipids, suggesting that cholesterol filled the gap between the hydrophobic tails of ionizable lipids. The decrease in molecular mobility and change in orientation of lipid mixtures contributed to the maintenance of the stacked bilayer structure of siRNA and ionizable lipids, thereby increasing the siRNA encapsulation efficiency. Furthermore, NMR relaxometry revealed that incorporating those neutral lipids enhanced PEG chain flexibility at the LNP interface. Notably, a small amount of DSPC effectively increased PEG chain flexibility, possibly contributing to the improved dispersion stability and narrower size distribution of LNPs. However, cryogenic transmission electron microscopy represented that adding excess amounts of DSPC and cholesterol into LNP resulted in the formation of deformed particles and demixing cholesterol within the LNP, respectively. The optimal lipid composition of ionizable lipid-based LNPs in terms of siRNA encapsulation efficiency and PEG chain flexibility was rationalized based on the molecular-level characterization of LNPs. Moreover, the NMR relaxation rate of tertiary amine protons of ionizable lipids, which are the interaction site with siRNA, can be a valuable indicator of the encapsulated amount of siRNA within LNPs. Thus, NMR-based analysis can be a powerful tool for efficiently designing LNP formulations and their quality control based on the molecular-level elucidation of the physicochemical properties of LNPs.
NMR 弛豫谱法被应用于负载 siRNA 的脂质纳米粒(LNP)的分子水平结构分析,以阐明中性脂质 1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)和胆固醇对 LNP 理化性质的影响。在可离子化脂质基 LNP 中掺入 DSPC 和胆固醇会降低可离子化脂质的分子流动性。DSPC 降低了可离子化脂质的整体分子流动性,而胆固醇特异性地降低了可离子化脂质的疏水尾部的流动性,表明胆固醇填补了可离子化脂质疏水尾部之间的空隙。脂质混合物的分子流动性降低和取向变化有助于维持 siRNA 和可离子化脂质的堆叠双层结构,从而提高 siRNA 包封效率。此外,NMR 弛豫谱法表明,掺入这些中性脂质增强了 LNP 界面上 PEG 链的柔韧性。值得注意的是,少量的 DSPC 有效地增加了 PEG 链的柔韧性,这可能有助于提高 LNP 的分散稳定性和更窄的粒径分布。然而,低温透射电子显微镜表示,向 LNP 中添加过量的 DSPC 和胆固醇分别导致形成变形颗粒和胆固醇在 LNP 内的相分离。基于 LNP 的分子水平表征,合理化了可离子化脂质基 LNP 在 siRNA 包封效率和 PEG 链柔韧性方面的最佳脂质组成。此外,可离子化脂质的叔胺质子的 NMR 弛豫率,即与 siRNA 相互作用的位点,可用作 LNP 内包裹的 siRNA 量的有价值指标。因此,基于 NMR 的分析可以成为一种强大的工具,用于根据 LNP 的理化性质的分子水平阐明,高效设计 LNP 配方及其质量控制。