Liu Wei, Zhang Meihui, Lv Huiyuan, Yang Chuanxu
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Pharmaceutics. 2025 Jul 22;17(8):950. doi: 10.3390/pharmaceutics17080950.
: Lipid nanoparticles (LNPs) represent one of the most effective non-viral vectors for nucleic acid delivery and have demonstrated clinical success in siRNA therapies and mRNA vaccines. While considerable research has focused on optimizing ionizable lipids and helper lipids, the impact of PEGylated lipid content on LNP-mediated mRNA delivery, especially in terms of in vitro transfection efficiency and in vivo performance, remains insufficiently understood. : In this study, LNPs were formulated using a self-synthesized ionizable lipid and varying molar ratios of DMG-PEG2000. Nanoparticles were prepared via nanoprecipitation, and their physicochemical properties, mRNA encapsulation efficiency, cellular uptake, and transfection efficiency were evaluated in HeLa and DC2.4 cells. In vivo delivery efficiency and organ distribution were assessed in mice following intravenous administration. : The PEGylated lipid content exerted a significant influence on both the in vitro and in vivo performance of LNPs. A bell-shaped relationship between PEG content and transfection efficiency was observed: 1.5% DMG-PEG2000 yielded optimal mRNA transfection in vitro, while 5% DMG-PEG2000 resulted in the highest transgene expression in vivo. This discrepancy in optimal PEG content may be attributed to the trade-off between cellular uptake and systemic circulation: lower PEG levels enhance cellular internalization, whereas higher PEG levels improve stability and in vivo bioavailability at the expense of cellular entry. Furthermore, varying the PEG-lipid content enabled the partial modulation of organ distribution, offering a formulation-based strategy to influence biodistribution without altering the ionizable lipid structure. : This study highlights the critical role of PEGylated lipid content in balancing nanoparticle stability, cellular uptake, and in vivo delivery performance. Our findings provide valuable mechanistic insights and suggest a straightforward formulation-based strategy to optimize LNP/mRNA systems for therapeutic applications.
脂质纳米颗粒(LNPs)是核酸递送中最有效的非病毒载体之一,已在siRNA疗法和mRNA疫苗方面取得了临床成功。尽管大量研究集中在优化可电离脂质和辅助脂质上,但聚乙二醇化脂质含量对LNP介导的mRNA递送的影响,特别是在体外转染效率和体内性能方面,仍未得到充分了解。
在本研究中,使用自行合成的可电离脂质和不同摩尔比的DMG-PEG2000制备了LNPs。通过纳米沉淀法制备纳米颗粒,并在HeLa和DC2.4细胞中评估其物理化学性质、mRNA包封效率、细胞摄取和转染效率。静脉注射后,在小鼠体内评估体内递送效率和器官分布。
聚乙二醇化脂质含量对LNPs的体外和体内性能均有显著影响。观察到PEG含量与转染效率之间呈钟形关系:1.5%的DMG-PEG2000在体外产生最佳的mRNA转染效果,而5%的DMG-PEG2000在体内导致最高的转基因表达。最佳PEG含量的这种差异可能归因于细胞摄取和全身循环之间的权衡:较低的PEG水平增强细胞内化,而较高的PEG水平以细胞进入为代价提高稳定性和体内生物利用度。此外,改变PEG-脂质含量能够部分调节器官分布,提供了一种基于配方的策略来影响生物分布,而不改变可电离脂质结构。
本研究强调了聚乙二醇化脂质含量在平衡纳米颗粒稳定性、细胞摄取和体内递送性能方面的关键作用。我们的研究结果提供了有价值的机制见解,并提出了一种简单的基于配方的策略,以优化用于治疗应用的LNP/mRNA系统。