Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
J Control Release. 2024 Sep;373:738-748. doi: 10.1016/j.jconrel.2024.07.055. Epub 2024 Aug 2.
This study aimed to assess the applicability of solution-state H NMR for molecular-level characterization of siRNA-loaded lipid nanoparticles (LNP). Dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA, MC3) was used as an ionizable lipid, and siRNA-loaded LNPs were prepared by pre-mixing and post-mixing methods. The pre-mixing method involved mixing an acidic solution containing siRNA with an ethanolic lipid solution using a microfluidic mixer. The pre-mixed LNP was prepared by dialyzing the mixed solution into the phosphate buffered saline (PBS, pH 7.4). The post-mixed LNP was prepared by mixing the siRNA solution with empty LNP in an acidic condition with and without ethanol, resulting in post-mixed LNP (A) and (B), respectively. Both pre-mixed and post-mixed LNPs formed LNP particles with an average diameter of approximately 50 nm. Moreover, the ratio of encapsulated siRNA to lipid content in each LNP particle remained constant regardless of the preparation method. However, small-angle X-ray scattering measurements indicated structural variations in the siRNA-MC3 stacked bilayer structure formed in the LNPs, depending on the preparation method. Solution-state H NMR analysis suggested that the siRNA was incorporated uniformly into the LNP core for pre-mixed LNP compared to post-mixed LNPs. In contrast, the post-mixed LNPs contained siRNA-empty regions with local enrichment of siRNA in the LNP core. This heterogeneity was more pronounced in post-mixed LNP (B) than in post-mixed LNP (A), suggesting that ethanol facilitated the homogeneous mixing of siRNA with LNP lipids. The silencing effect of each siRNA-loaded LNP was reduced in the order of pre-mixed LNP, post-mixed LNP (A), and post-mixed LNP (B). This suggested that the heterogeneity of the siRNA-loaded LNP could cause a reduction in the silencing effect of the incorporated siRNA inside LNPs. The present study highlighted that NMR-based characterization of siRNA-loaded LNP can reveal the molecular-level heterogeneity of siRNA-loaded LNP, which helps to optimize the preparation conditions of siRNA-loaded LNP formulations.
本研究旨在评估溶液状态 H NMR 用于分析载 siRNA 的脂质纳米粒(LNP)的分子水平特征的适用性。使用二油酰基甲基-4-二甲氨基丁酸盐(DLin-MC3-DMA,MC3)作为可离子化脂质,并通过预混合和后混合方法制备载 siRNA 的 LNP。预混合方法涉及使用微流混合器将含有 siRNA 的酸性溶液与乙醇脂质溶液混合。将混合溶液透析到磷酸盐缓冲盐水(PBS,pH 7.4)中即可制备预混合 LNP。后混合 LNP 通过在酸性条件下将 siRNA 溶液与空 LNP 混合来制备,有无乙醇分别得到后混合 LNP(A)和(B)。预混合和后混合 LNP 均形成平均直径约为 50nm 的 LNP 颗粒。此外,无论制备方法如何,每个 LNP 颗粒中包裹的 siRNA 与脂质的比例保持不变。然而,小角 X 射线散射测量表明,形成 LNP 中的 siRNA-MC3 堆叠双层结构的结构存在差异,这取决于制备方法。溶液状态 H NMR 分析表明,与后混合 LNP 相比,预混合 LNP 中的 siRNA 均匀掺入 LNP 核心。相比之下,后混合 LNP 包含 siRNA-空区域,siRNA 在 LNP 核心中局部富集。在后混合 LNP(B)中,这种异质性比在后混合 LNP(A)中更为明显,这表明乙醇促进了 siRNA 与 LNP 脂质的均匀混合。每个载 siRNA 的 LNP 的沉默效果按预混合 LNP、后混合 LNP(A)和后混合 LNP(B)的顺序降低。这表明载 siRNA 的 LNP 的异质性可能导致 LNP 内部包裹的 siRNA 的沉默效果降低。本研究强调,基于 NMR 的载 siRNA 的 LNP 特征分析可以揭示载 siRNA 的 LNP 的分子水平异质性,这有助于优化载 siRNA 的 LNP 制剂的制备条件。