Suppr超能文献

使用设计的混合过程实验和自验证集成模型(SVEM)优化脂质纳米粒子(LNP)配方的工作流程。

A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM).

机构信息

Adsurgo, LLC;

Arcturus Therapeutics.

出版信息

J Vis Exp. 2023 Aug 18(198). doi: 10.3791/65200.

Abstract

We present a Quality by Design (QbD) styled approach for optimizing lipid nanoparticle (LNP) formulations, aiming to offer scientists an accessible workflow. The inherent restriction in these studies, where the molar ratios of ionizable, helper, and PEG lipids must add up to 100%, requires specialized design and analysis methods to accommodate this mixture constraint. Focusing on lipid and process factors that are commonly used in LNP design optimization, we provide steps that avoid many of the difficulties that traditionally arise in the design and analysis of mixture-process experiments by employing space-filling designs and utilizing the recently developed statistical framework of self-validated ensemble models (SVEM). In addition to producing candidate optimal formulations, the workflow also builds graphical summaries of the fitted statistical models that simplify the interpretation of the results. The newly identified candidate formulations are assessed with confirmation runs and optionally can be conducted in the context of a more comprehensive second-phase study.

摘要

我们提出了一种基于质量源于设计(QbD)的方法来优化脂质纳米粒(LNP)制剂,旨在为科学家提供一种易于使用的工作流程。在这些研究中,由于可离子化、辅助和 PEG 脂质的摩尔比必须加起来等于 100%,因此需要专门的设计和分析方法来适应这种混合物约束。本研究聚焦于脂质和工艺因素,这些因素通常用于 LNP 设计优化,我们提供了一些步骤,可以通过使用空间填充设计和利用最近开发的自验证整体模型(SVEM)统计框架,避免传统混合物工艺实验设计和分析中出现的许多困难。除了生成候选最佳制剂外,该工作流程还构建了拟合统计模型的图形摘要,简化了结果的解释。新确定的候选制剂可以通过确认运行进行评估,并且可以根据需要在更全面的第二阶段研究中进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验