文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于XGBoost/贝叶斯方法和集成模型方法的机器学习驱动的mRNA-脂质纳米颗粒疫苗质量优化

Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches.

作者信息

Maharjan Ravi, Kim Ki Hyun, Lee Kyeong, Han Hyo-Kyung, Jeong Seong Hoon

机构信息

BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea.

College of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea.

出版信息

J Pharm Anal. 2024 Nov;14(11):100996. doi: 10.1016/j.jpha.2024.100996. Epub 2024 May 8.


DOI:10.1016/j.jpha.2024.100996
PMID:39759971
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11696778/
Abstract

To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP formulations ( = 24) were developed using an I-optimal design, where machine learning tools (XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and process attributes. The critical responses like particle size (PS), polydispersity index (PDI), Zeta potential, pKa, heat trend cycle, encapsulation efficiency (EE), recovery ratio, and encapsulated mRNA were evaluated. Overall prediction of SVEM (>97%) was comparably better than that of XGBoost/Bayesian optimization (>94%). Moreover, in actual experimental outcomes, SVEM prediction is close to the actual data as confirmed by the experimental PS (94-96 nm) is close to the predicted one (95-97 nm). The other parameters including PDI and EE were also close to the actual experimental data.

摘要

为提高疫苗生产效率,本研究聚焦于优化信使核糖核酸-脂质纳米颗粒(mRNA-LNP)的微流控条件和脂质混合比例。使用I-最优设计开发了不同的mRNA-LNP配方(n = 24),其中利用机器学习工具(XGBoost/贝叶斯优化和自验证集成(SVEM))来优化工艺并预测脂质混合比例。该研究涵盖材料属性、它们各自的比例以及工艺属性。对诸如粒径(PS)、多分散指数(PDI)、zeta电位、pKa、热趋势循环、包封效率(EE)、回收率和包封的mRNA等关键响应进行了评估。SVEM的总体预测(>97%)比XGBoost/贝叶斯优化(>94%)要好。此外,在实际实验结果中,SVEM预测与实际数据接近,如实验测得的PS(94 - 96纳米)接近预测值(95 - 97纳米)所证实。包括PDI和EE在内的其他参数也与实际实验数据接近。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/9f7156050e19/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/cfa878103ab9/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/b800223066ba/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/ca55f917f488/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/a38a6a705ec7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/b587c8021383/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/0e529fb61d0e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/40409e5c8838/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/138a28907d81/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/a72f453cb2f1/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/afce048277af/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/9f7156050e19/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/cfa878103ab9/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/b800223066ba/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/ca55f917f488/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/a38a6a705ec7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/b587c8021383/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/0e529fb61d0e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/40409e5c8838/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/138a28907d81/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/a72f453cb2f1/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/afce048277af/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee7/11696778/9f7156050e19/gr10.jpg

相似文献

[1]
Machine learning-driven optimization of mRNA-lipid nanoparticle vaccine quality with XGBoost/Bayesian method and ensemble model approaches.

J Pharm Anal. 2024-11

[2]
Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach.

Int J Pharm. 2023-6-10

[3]
Understanding the Manufacturing Process of Lipid Nanoparticles for mRNA Delivery Using Machine Learning.

Chem Pharm Bull (Tokyo). 2024

[4]
A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM).

J Vis Exp. 2023-8-18

[5]
Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm.

Acta Pharm Sin B. 2022-6

[6]
A careful look at lipid nanoparticle characterization: analysis of benchmark formulations for encapsulation of RNA cargo size gradient.

Sci Rep. 2024-1-29

[7]
Process Optimization of Charge-Reversible Lipid Nanoparticles for Cytosolic Protein Delivery Using the Design-of-Experiment Approach.

Biol Pharm Bull. 2025

[8]
Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning.

Int J Pharm. 2023-11-5

[9]
Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery.

Expert Opin Drug Deliv. 2023

[10]
Quality by design (QbD) optimization of diazepam-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery: Toxicological effect of surface charge on human neuronal cells.

Int J Pharm. 2021-9-25

引用本文的文献

[1]
Artificial Intelligence-Driven Strategies for Targeted Delivery and Enhanced Stability of RNA-Based Lipid Nanoparticle Cancer Vaccines.

Pharmaceutics. 2025-7-30

[2]
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy.

Biosensors (Basel). 2025-8-4

[3]
Next-Generation Vaccine Platforms: Integrating Synthetic Biology, Nanotechnology, and Systems Immunology for Improved Immunogenicity.

Vaccines (Basel). 2025-5-30

[4]
Bayesian optimization and machine learning for vaccine formulation development.

PLoS One. 2025-6-11

[5]
Development and validation of a prediction model for myelosuppression in lung cancer patients after platinum-based doublet chemotherapy: a multifactorial analysis approach.

Am J Cancer Res. 2025-2-15

[6]
Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy.

Front Cell Infect Microbiol. 2025-1-20

本文引用的文献

[1]
AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery.

Nat Commun. 2024-7-26

[2]
A Workflow for Lipid Nanoparticle (LNP) Formulation Optimization using Designed Mixture-Process Experiments and Self-Validated Ensemble Models (SVEM).

J Vis Exp. 2023-8-18

[3]
Machine-learning-based predictions of imprinting quality using ensemble and non-linear regression algorithms.

Sci Rep. 2023-7-26

[4]
Evaluation of a DoE based approach for comprehensive modelling of the effect of lipid nanoparticle composition on nucleic acid delivery.

Biomaterials. 2023-8

[5]
Comparative study of lipid nanoparticle-based mRNA vaccine bioprocess with machine learning and combinatorial artificial neural network-design of experiment approach.

Int J Pharm. 2023-6-10

[6]
Successful batch and continuous lyophilization of mRNA LNP formulations depend on cryoprotectants and ionizable lipids.

Biomater Sci. 2023-6-13

[7]
Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?

Nano Today. 2022-12

[8]
Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis.

Acta Pharm Sin B. 2023-3

[9]
Effect of Cholesterol Content of Lipid Composition in mRNA-LNPs on the Protein Expression in the Injected Site and Liver After Local Administration in Mice.

J Pharm Sci. 2023-5

[10]
Lipid Microparticles Show Similar Efficacy With Lipid Nanoparticles in Delivering mRNA and Preventing Cancer.

Pharm Res. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索