Suppr超能文献

人工智能在多参数 MRI 检测原发性前列腺癌及其临床结局中的应用:系统评价和荟萃分析方案。

Use of artificial intelligence in the detection of primary prostate cancer in multiparametric MRI with its clinical outcomes: a protocol for a systematic review and meta-analysis.

机构信息

School of Medicine, Imperial College London, London, UK

School of Medicine, Imperial College London, London, UK.

出版信息

BMJ Open. 2023 Aug 22;13(8):e074009. doi: 10.1136/bmjopen-2023-074009.

Abstract

INTRODUCTION

Multiparametric MRI (mpMRI) has transformed the prostate cancer diagnostic pathway, allowing for improved risk stratification and more targeted subsequent management. However, concerns exist over the interobserver variability of images and the applicability of this model long term, especially considering the current shortage of radiologists and the growing ageing population. Artificial intelligence (AI) is being integrated into clinical practice to support diagnostic and therapeutic imaging analysis to overcome these concerns. The following report details a protocol for a systematic review and meta-analysis investigating the accuracy of AI in predicting primary prostate cancer on mpMRI.

METHODS AND ANALYSIS

A systematic search will be performed using PubMed, MEDLINE, Embase and Cochrane databases. All relevant articles published between January 2016 and February 2023 will be eligible for inclusion. To be included, articles must use AI to study MRI prostate images to detect prostate cancer. All included articles will be in full-text, reporting original data and written in English. The protocol follows the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2015 checklist. The QUADAS-2 score will assess the quality and risk of bias across selected studies.

ETHICS AND DISSEMINATION

Ethical approval will not be required for this systematic review. Findings will be disseminated through peer-reviewed publications and presentations at both national and international conferences.

PROSPERO REGISTRATION NUMBER

CRD42021293745.

摘要

简介

多参数磁共振成像(mpMRI)改变了前列腺癌的诊断途径,使风险分层更加精确,并能更有针对性地进行后续管理。然而,人们对图像的观察者间变异性以及该模型的长期适用性存在担忧,尤其是考虑到目前放射科医生短缺和不断增长的老年人口。人工智能(AI)正被整合到临床实践中,以支持诊断和治疗成像分析,以克服这些担忧。本报告详细介绍了一项系统评价和荟萃分析的研究方案,旨在研究 AI 在预测 mpMRI 原发性前列腺癌中的准确性。

方法和分析

将使用 PubMed、MEDLINE、Embase 和 Cochrane 数据库进行系统搜索。所有在 2016 年 1 月至 2023 年 2 月期间发表的相关文章都有资格入选。为了符合入选标准,文章必须使用 AI 来研究 MRI 前列腺图像以检测前列腺癌。所有纳入的文章都将是全文,报告原始数据,并以英文书写。本方案遵循 2015 年系统评价和荟萃分析报告的首选报告项目清单。QUADAS-2 评分将评估选定研究的质量和偏倚风险。

伦理和传播

本系统评价不需要伦理批准。研究结果将通过同行评议的出版物和在国内外会议上的演讲进行传播。

PROSPERO 注册号:CRD42021293745。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验