Suppr超能文献

人工智能与放射科医生在磁共振成像上对前列腺癌进行初步诊断的比较:一项系统评价及对未来研究的建议

Artificial Intelligence Compared to Radiologists for the Initial Diagnosis of Prostate Cancer on Magnetic Resonance Imaging: A Systematic Review and Recommendations for Future Studies.

作者信息

Syer Tom, Mehta Pritesh, Antonelli Michela, Mallett Sue, Atkinson David, Ourselin Sébastien, Punwani Shonit

机构信息

Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London, London WC1E 6DH, UK.

Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, Bloomsbury Campus, University College London, London WC1E 6DH, UK.

出版信息

Cancers (Basel). 2021 Jul 1;13(13):3318. doi: 10.3390/cancers13133318.

Abstract

Computer-aided diagnosis (CAD) of prostate cancer on multiparametric magnetic resonance imaging (mpMRI), using artificial intelligence (AI), may reduce missed cancers and unnecessary biopsies, increase inter-observer agreement between radiologists, and alleviate pressures caused by rising case incidence and a shortage of specialist radiologists to read prostate mpMRI. However, well-designed evaluation studies are required to prove efficacy above current clinical practice. A systematic search of the MEDLINE, EMBASE, and arXiv electronic databases was conducted for studies that compared CAD for prostate cancer detection or classification on MRI against radiologist interpretation and a histopathological reference standard, in treatment-naïve men with a clinical suspicion of prostate cancer. Twenty-seven studies were included in the final analysis. Due to substantial heterogeneities in the included studies, a narrative synthesis is presented. Several studies reported superior diagnostic accuracy for CAD over radiologist interpretation on small, internal patient datasets, though this was not observed in the few studies that performed evaluation using external patient data. Our review found insufficient evidence to suggest the clinical deployment of artificial intelligence algorithms at present. Further work is needed to develop and enforce methodological standards, promote access to large diverse datasets, and conduct prospective evaluations before clinical adoption can be considered.

摘要

利用人工智能在多参数磁共振成像(mpMRI)上对前列腺癌进行计算机辅助诊断(CAD),可能会减少漏诊的癌症病例和不必要的活检,提高放射科医生之间的观察者间一致性,并缓解因病例发病率上升和缺乏解读前列腺mpMRI的专科放射科医生而造成的压力。然而,需要精心设计的评估研究来证明其疗效优于当前的临床实践。我们对MEDLINE、EMBASE和arXiv电子数据库进行了系统检索,以查找在临床怀疑患有前列腺癌的初治男性中,比较MRI上用于前列腺癌检测或分类的CAD与放射科医生解读及组织病理学参考标准的研究。最终分析纳入了27项研究。由于纳入研究存在大量异质性,故进行叙述性综述。几项研究报告称,在患者内部的小数据集中,CAD的诊断准确性优于放射科医生的解读,但在少数使用外部患者数据进行评估的研究中未观察到这一点。我们的综述发现,目前尚无足够证据表明可将人工智能算法应用于临床。在考虑临床应用之前,需要进一步开展工作来制定和执行方法学标准,推动获取大量多样的数据集,并进行前瞻性评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d10a/8268820/ee9d940df53b/cancers-13-03318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验