Kar S, Kumari P, Kamalakar M Venkata, Ray S J
Department of Physics, Indian Institute of Technology Patna, Bihta, 801103, India.
Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden.
Sci Rep. 2023 Aug 22;13(1):13696. doi: 10.1038/s41598-023-39993-8.
Atomically thin two-dimensional (2D) Janus materials and their Van der Waals heterostructures (vdWHs) have emerged as a new class of intriguing semiconductor materials due to their versatile application in electronic and optoelectronic devices. Herein, We have invstigated most probable arrangements of different inhomogeneous heterostructures employing one layer of transition metal dichalcogenide, TMD (MoS, WS, MoSe, and WSe) piled on the top of Janus TMD (MoSeTe or WSeTe) and investigated their structural, electronic as well as optical properties through first-principles based calculations. After that, we applied twist engineering between the monolayers from 0[Formula: see text] 60[Formula: see text] twist angle, which delivers lattice reconstruction and improves the performance of the vdWHs due to interlayer coupling. The result reveals that all the proposed vdWHs are dynamically and thermodynamically stable. Some vdWHs such as MoS/MoSeTe, WS/WSeTe, MoS/WSeTe, MoSe/MoSeTe, and WS/MoSeTe exhibit direct bandgap with type-II band alignment at some specific twist angle, which shows potential for future photovoltaic devices. Moreover, the electronic property and carrier mobility can be effectively tuned in the vdWHs compared to the respective monolayers. Furthermore, the visible optical absorption of all the Janus vdWHs at [Formula: see text] = 0[Formula: see text] can be significantly enhanced due to the weak inter-layer coupling and redistribution of the charges. Therefore, the interlayer twisting not only provides an opportunity to observe new exciting properties but also gives a novel route to modulate the electronic and optoelectronic properties of the heterostructure for practical applications.
原子级薄的二维(2D)Janus材料及其范德华异质结构(vdWHs)因其在电子和光电器件中的广泛应用而成为一类新型的有趣半导体材料。在此,我们研究了采用一层过渡金属二硫属化物TMD(MoS、WS、MoSe和WSe)堆叠在Janus TMD(MoSeTe或WSeTe)顶部的不同非均匀异质结构的最可能排列方式,并通过基于第一性原理的计算研究了它们的结构、电子和光学性质。之后,我们在单层之间应用了从0°到60°的扭转工程,由于层间耦合,这会导致晶格重构并改善vdWHs的性能。结果表明,所有提出的vdWHs在动力学和热力学上都是稳定的。一些vdWHs,如MoS/MoSeTe、WS/WSeTe、MoS/WSeTe、MoSe/MoSeTe和WS/MoSeTe在某些特定扭转角下表现出具有II型能带排列的直接带隙,这显示了其在未来光伏器件中的潜力。此外,与各自的单层相比,vdWHs中的电子性质和载流子迁移率可以得到有效调节。此外,由于层间耦合较弱和电荷重新分布,所有Janus vdWHs在λ = 0时的可见光吸收可以显著增强。因此,层间扭转不仅提供了观察新的令人兴奋的性质的机会,而且为实际应用中调节异质结构的电子和光学性质提供了一条新途径。