Suppr超能文献

预测肥胖儿童的胰岛素抵抗。

Predicting Insulin Resistance in a Pediatric Population With Obesity.

机构信息

From the Pediatrics Department, Hospital de Braga, Braga, Portugal.

Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.

出版信息

J Pediatr Gastroenterol Nutr. 2023 Dec 1;77(6):779-787. doi: 10.1097/MPG.0000000000003910. Epub 2023 Aug 23.

Abstract

OBJECTIVES

Insulin resistance (IR) affects children and adolescents with obesity and early diagnosis is crucial to prevent long-term consequences. Our aim was to identify predictors of IR and develop a multivariate model to accurately predict IR.

METHODS

We conducted a cross-sectional analysis of demographical, clinical, and biochemical data from a cohort of patients attending a specialized Paediatric Nutrition Unit in Portugal over a 20-year period. We developed multivariate regression models to predict IR. The participants were randomly divided into 2 groups: a model group for developing the predictive models and a validation group for cross-validation of the study.

RESULTS

Our study included 1423 participants, aged 3-17 years old, randomly divided in the model (n = 879) and validation groups (n = 544). The predictive models, including uniquely demographic and clinical variables, demonstrated good discriminative ability [area under the curve (AUC): 0.834-0.868; sensitivity: 77.0%-83.7%; specificity: 77.0%-78.7%] and high negative predictive values (88.9%-91.6%). While the diagnostic ability of adding fasting glucose or triglycerides/high density lipoprotein cholesterol index to the models based on clinical parameters did not show significant improvement, fasting insulin appeared to enhance the discriminative power of the model (AUC: 0.996). During the validation, the model considering demographic and clinical variables along with insulin showed excellent IR discrimination (AUC: 0.978) and maintained high negative predictive values (90%-96.3%) for all models.

CONCLUSION

Models based on demographic and clinical variables can be advantageously used to identify children and adolescents at moderate/high risk of IR, who would benefit from fasting insulin evaluation.

摘要

目的

胰岛素抵抗(IR)影响肥胖的儿童和青少年,早期诊断对于预防长期后果至关重要。我们的目的是确定 IR 的预测因素,并开发一个多变量模型来准确预测 IR。

方法

我们对葡萄牙一家儿科营养科 20 年来的患者进行了横断面分析,收集了人口统计学、临床和生化数据。我们开发了多变量回归模型来预测 IR。参与者被随机分为两组:一个模型组用于开发预测模型,一个验证组用于交叉验证研究。

结果

我们的研究包括 1423 名年龄在 3-17 岁的参与者,随机分为模型组(n=879)和验证组(n=544)。包括独特的人口统计学和临床变量的预测模型具有良好的区分能力[曲线下面积(AUC):0.834-0.868;灵敏度:77.0%-83.7%;特异性:77.0%-78.7%]和高阴性预测值(88.9%-91.6%)。虽然将空腹血糖或甘油三酯/高密度脂蛋白胆固醇指数添加到基于临床参数的模型中并没有显著提高诊断能力,但空腹胰岛素似乎提高了模型的区分能力(AUC:0.996)。在验证过程中,考虑到人口统计学和临床变量以及胰岛素的模型表现出了出色的 IR 区分能力(AUC:0.978),并保持了所有模型的高阴性预测值(90%-96.3%)。

结论

基于人口统计学和临床变量的模型可以用于识别具有中度/高度 IR 风险的儿童和青少年,这些患者将受益于空腹胰岛素评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验