Lin Hong-You, Tran Hong-Chuong, Lo Yu-Lung, Le Trong-Nhan, Chiu Kuo-Chi, Hsu Yuan-Yao
Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
3D Print Addit Manuf. 2023 Aug 1;10(4):732-748. doi: 10.1089/3dp.2021.0180. Epub 2023 Aug 9.
Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.
激光粉末床熔融(LPBF)为制造具有复杂几何形状的零件提供了一种快速且通用的方法。然而,许多具有复杂几何形状的零件具有悬垂结构,使用LPBF难以制造这些结构,并且它们常常会因台阶效应、翘曲、裂纹和熔渣形成而质量下降。因此,本研究提出了一种数值与实验相结合的方法,以确定激光功率和扫描速度的最佳设置,从而使Inconel 718 LPBF悬垂结构的表面粗糙度最小化并使密度最大化。在所提出的方法中,利用传热模拟来确定在激光功率和扫描速度组合的可行输入空间内的熔池深度、熔池长度和固体冷却速率。值得注意的是,模拟分别考虑了固体和粉末材料的材料特性差异以及粉末层深度方向上激光吸收率的变化。然后,将模拟结果用于训练人工神经网络,以预测输入空间内3600种激光功率和扫描速度组合的熔池深度。根据三个质量标准(即熔池深度、熔池长度和固体冷却速率)对所得的加工图进行筛选,以确定最佳加工区域,从而改善表面粗糙度。通过使用从最佳加工图中选择的参数设置制造10×10和20×20 mm的水平悬垂结构,证明了所提出方法的可行性。结果表明,最佳加工条件可导致低表面粗糙度和99.78%的最大密度。