Suppr超能文献

基于机器学习的激光粉末床熔融制造的竣工CM247LC材料的蒙皮表面粗糙度预测

Downskin Surface Roughness Prediction with Machine Learning for As-Built CM247LC Fabricated Via Powder Bed Fusion with a Laser Beam.

作者信息

Koo Jageon, Lee Seungjae, Baek Adrian Matias Chung, Park Eunju, Kim Namhun

机构信息

Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.

出版信息

3D Print Addit Manuf. 2024 Aug 20;11(4):1510-1522. doi: 10.1089/3dp.2022.0365. eCollection 2024 Aug.

Abstract

Powder bed fusion with a laser beam (PBF-LB) is a widely used metal additive manufacturing method for fabricating complex three-dimensional components with a variety of metallic powders. However, metal parts fabricated by PBF-LB often present surface quality problems because of the layer-wise building process and the occurrence of partially unmelted powder particles. To reduce the surface roughness, surface post-processing is required, which incurs additional time and cost. In particular, the downskin surface generally has the worst surface roughness among the fabricated components. The rough surface reduces the lifetime and quality of the holed part owing to cracks, corrosion, and wear. In this study, for fast and efficient improvement of the downskin surface roughness of CM247LC fabricated by PBF-LB, machine learning algorithms, namely support vector regression (SVR), random forest (RF), and multilayer perceptron (MLP), were introduced to predict downskin surface roughness in the process parameter selection step. Three PBF-LB process parameters (laser power, scanning speed, and hatching distance) and the overhang angle were selected as the input variables for the machine learning models for predicting downskin surface roughness. Test samples were prepared and used for training and evaluation of the proposed machine learning algorithms, with RF showing the most promising results. Early results were confirmed when model predictions were compared to the actual measured roughness of a fabricated vane part, with average deviations of 13.7%, 4.3%, and 22.5% observed for SVR, RF, and MLP, respectively. The results showed that the proposed machine learning models could accurately predict the downskin surface roughness in the process parameter selection step without the use of any sensor, with RF showing the highest prediction accuracy.

摘要

激光束粉末床熔融(PBF-LB)是一种广泛应用的金属增材制造方法,用于使用各种金属粉末制造复杂的三维部件。然而,由于逐层制造工艺以及部分未熔粉末颗粒的出现,通过PBF-LB制造的金属部件常常存在表面质量问题。为了降低表面粗糙度,需要进行表面后处理,这会带来额外的时间和成本。特别是,下表面通常在制造的部件中具有最差的表面粗糙度。粗糙的表面会由于裂纹、腐蚀和磨损而降低带孔部件的寿命和质量。在本研究中,为了快速有效地改善通过PBF-LB制造的CM247LC的下表面粗糙度,引入了机器学习算法,即支持向量回归(SVR)、随机森林(RF)和多层感知器(MLP),以在工艺参数选择步骤中预测下表面粗糙度。选择三个PBF-LB工艺参数(激光功率、扫描速度和扫描间距)以及悬垂角度作为用于预测下表面粗糙度的机器学习模型的输入变量。制备了测试样品并用于所提出的机器学习算法的训练和评估,其中RF显示出最有前景的结果。当将模型预测与制造的叶片部件的实际测量粗糙度进行比较时,早期结果得到了证实,SVR、RF和MLP的平均偏差分别为13.7%、4.3%和22.5%。结果表明,所提出的机器学习模型可以在不使用任何传感器的情况下,在工艺参数选择步骤中准确预测下表面粗糙度,其中RF显示出最高的预测精度。

相似文献

10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验