Suppr超能文献

一氧化氮感应蛋白对生物膜形成的负调控。

Negative regulation of biofilm formation by nitric oxide sensing proteins.

机构信息

Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A.

出版信息

Biochem Soc Trans. 2023 Aug 31;51(4):1447-1458. doi: 10.1042/BST20220845.

Abstract

Biofilm-based infections pose a serious threat to public health. Biofilms are surface-attached communities of microorganisms, most commonly bacteria and yeast, residing in an extracellular polymeric substance (EPS). The EPS is composed of several secreted biomolecules that shield the microorganisms from harsh environmental stressors and promote antibiotic resistance. Due to the increasing prominence of multidrug-resistant microorganisms and a decreased development of bactericidal agents in clinical production, there is an increasing need to discover alternative targets and treatment regimens for biofilm-based infections. One promising strategy to combat antibiotic resistance in biofilm-forming bacteria is to trigger biofilm dispersal, which is a natural part of the bacterial biofilm life cycle. One signal for biofilm dispersal is the diatomic gas nitric oxide (NO). Low intracellular levels of NO have been well documented to rapidly disperse biofilm macrostructures and are sensed by a widely conserved NO-sensory protein, NosP, in many pathogenic bacteria. When bound to heme and ligated to NO, NosP inhibits the autophosphorylation of NosP's associated histidine kinase, NahK, reducing overall biofilm formation. This reduction in biofilm formation is regulated by the decrease in secondary metabolite bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). The NosP/NahK signaling pathway is also associated with other major regulatory systems in the maturation of bacterial biofilms, including virulence and quorum sensing. In this review, we will focus on recent discoveries investigating NosP, NahK and NO-mediated biofilm dispersal in pathogenic bacteria.

摘要

生物膜相关感染对公共卫生构成严重威胁。生物膜是微生物附着于表面的群落,最常见的是细菌和酵母,存在于细胞外多聚物(EPS)中。EPS 由几种分泌的生物分子组成,这些分子可以保护微生物免受恶劣环境压力的影响,并促进抗生素耐药性的产生。由于多药耐药微生物的日益突出以及临床生产中杀菌剂的开发减少,因此越来越需要发现针对生物膜感染的替代靶标和治疗方案。一种对抗生物膜形成细菌抗生素耐药性的有前途的策略是触发生物膜分散,这是细菌生物膜生命周期的自然组成部分。生物膜分散的一个信号是双原子气体一氧化氮(NO)。已有大量文献记录表明,细胞内低水平的 NO 可以迅速分散生物膜宏观结构,并被许多致病性细菌中广泛保守的 NO 感应蛋白 NosP 感知。当与血红素结合并与 NO 连接时,NosP 抑制 NosP 相关组氨酸激酶 NahK 的自磷酸化,从而减少整体生物膜形成。生物膜形成的减少受次级代谢物双(3'-5')-环二核苷酸鸟苷单磷酸(c-di-GMP)的减少调节。NosP/NahK 信号通路还与细菌生物膜成熟的其他主要调控系统有关,包括毒力和群体感应。在这篇综述中,我们将重点介绍最近在致病性细菌中研究 NosP、NahK 和 NO 介导的生物膜分散的发现。

相似文献

1
Negative regulation of biofilm formation by nitric oxide sensing proteins.
Biochem Soc Trans. 2023 Aug 31;51(4):1447-1458. doi: 10.1042/BST20220845.
2
NosP Signaling Modulates the NO/H-NOX-Mediated Multicomponent c-Di-GMP Network and Biofilm Formation in .
Biochemistry. 2019 Dec 3;58(48):4827-4841. doi: 10.1021/acs.biochem.9b00706. Epub 2019 Nov 18.
3
Discovery of Two Bacterial Nitric Oxide-Responsive Proteins and Their Roles in Bacterial Biofilm Regulation.
Acc Chem Res. 2017 Jul 18;50(7):1633-1639. doi: 10.1021/acs.accounts.7b00095. Epub 2017 Jun 12.
4
NosP Modulates Cyclic-di-GMP Signaling in .
Biochemistry. 2019 Oct 22;58(42):4325-4334. doi: 10.1021/acs.biochem.9b00618. Epub 2019 Oct 9.
5
The histidine kinase NahK regulates pyocyanin production through the PQS system.
J Bacteriol. 2024 Jan 25;206(1):e0027623. doi: 10.1128/jb.00276-23. Epub 2024 Jan 3.
6
NosP Detection of Heme Modulates Biofilm Formation.
Biochemistry. 2023 Aug 15;62(16):2426-2441. doi: 10.1021/acs.biochem.3c00187. Epub 2023 Jul 27.
7
Towards Understanding the Molecular Basis of Nitric Oxide-Regulated Group Behaviors in Pathogenic Bacteria.
J Innate Immun. 2019;11(3):205-215. doi: 10.1159/000494740. Epub 2018 Dec 17.
8
[Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria].
Rev Argent Microbiol. 2014 Jul-Sep;46(3):242-55. doi: 10.1016/S0325-7541(14)70079-3. Epub 2014 Oct 15.
9
10
Discovery of a Novel Nitric Oxide Binding Protein and Nitric-Oxide-Responsive Signaling Pathway in Pseudomonas aeruginosa.
ACS Infect Dis. 2017 Jun 9;3(6):454-461. doi: 10.1021/acsinfecdis.7b00027. Epub 2017 Mar 16.

引用本文的文献

4
Harnessing the Power of Our Immune System: The Antimicrobial and Antibiofilm Properties of Nitric Oxide.
Microorganisms. 2024 Dec 10;12(12):2543. doi: 10.3390/microorganisms12122543.
5
The histidine kinase NahK regulates denitrification and nitric oxide accumulation through RsmA in .
J Bacteriol. 2025 Jan 31;207(1):e0040824. doi: 10.1128/jb.00408-24. Epub 2024 Dec 11.
6
Two-Dimensional "Nanotanks" Release "Gas Bombs" through Photodynamic Cascades to Promote Diabetic Wound Healing.
Biomater Res. 2024 Oct 29;28:0100. doi: 10.34133/bmr.0100. eCollection 2024.
7
The histidine kinase NahK regulates pyocyanin production through the PQS system.
J Bacteriol. 2024 Jan 25;206(1):e0027623. doi: 10.1128/jb.00276-23. Epub 2024 Jan 3.

本文引用的文献

1
The histidine kinase NahK regulates pyocyanin production through the PQS system.
J Bacteriol. 2024 Jan 25;206(1):e0027623. doi: 10.1128/jb.00276-23. Epub 2024 Jan 3.
2
NosP Detection of Heme Modulates Biofilm Formation.
Biochemistry. 2023 Aug 15;62(16):2426-2441. doi: 10.1021/acs.biochem.3c00187. Epub 2023 Jul 27.
3
EFI-EST, EFI-GNT, and EFI-CGFP: Enzyme Function Initiative (EFI) Web Resource for Genomic Enzymology Tools.
J Mol Biol. 2023 Jul 15;435(14):168018. doi: 10.1016/j.jmb.2023.168018. Epub 2023 Feb 17.
6
Gradients and consequences of heterogeneity in biofilms.
Nat Rev Microbiol. 2022 Oct;20(10):593-607. doi: 10.1038/s41579-022-00692-2. Epub 2022 Feb 11.
7
Nitric oxide stimulates type IV MSHA pilus retraction in via activation of the phosphodiesterase CdpA.
Proc Natl Acad Sci U S A. 2022 Feb 15;119(7). doi: 10.1073/pnas.2108349119.
8
NO rapidly mobilizes cellular heme to trigger assembly of its own receptor.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2115774119.
9
H-NOX proteins in the virulence of pathogenic bacteria.
Biosci Rep. 2022 Jan 28;42(1). doi: 10.1042/BSR20212014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验