IEEE Trans Biomed Eng. 2024 Feb;71(2):484-493. doi: 10.1109/TBME.2023.3307952. Epub 2024 Jan 19.
Non-invasive human machine interfaces (HMIs) have high potential in medical, entertainment, and industrial applications. Traditionally, surface electromyography (sEMG) has been used to track muscular activity and infer motor intention. Ultrasound (US) has received increasing attention as an alternative to sEMG-based HMIs. Here, we developed a portable US armband system with 24 channels and a multiple receiver approach, and compared it with existing sEMG- and US-based HMIs on movement intention decoding.
US and motion capture data was recorded while participants performed wrist and hand movements of four degrees of freedom (DoFs) and their combinations. A linear regression model was used to offline predict hand kinematics from the US (or sEMG, for comparison) features. The method was further validated in real-time for a 3-DoF target reaching task.
In the offline analysis, the wearable US system achieved an average [Formula: see text] of 0.94 in the prediction of four DoFs of the wrist and hand while sEMG reached a performance of [Formula: see text]= 0.60. In online control, the participants achieved an average 93% completion rate of the targets.
When tailored for HMIs, the proposed US A-mode system and processing pipeline can successfully regress hand kinematics both in offline and online settings with performances comparable or superior to previously published interfaces.
Wearable US technology may provide a new generation of HMIs that use muscular deformation to estimate limb movements. The wearable US system allowed for robust proportional and simultaneous control over multiple DoFs in both offline and online settings.
非侵入式人机接口(HMI)在医学、娱乐和工业应用中具有很高的潜力。传统上,表面肌电图(sEMG)一直被用于跟踪肌肉活动并推断运动意图。超声(US)作为基于 sEMG 的 HMI 的替代方案受到了越来越多的关注。在这里,我们开发了一种具有 24 个通道和多接收器方法的便携式 US 臂带系统,并将其与现有的基于 sEMG 和 US 的 HMI 在运动意图解码方面进行了比较。
当参与者进行四个自由度(DoF)及其组合的手腕和手部运动时,记录 US 和运动捕捉数据。使用线性回归模型从 US(或 sEMG,用于比较)特征离线预测手部运动学。该方法进一步在实时用于三自由度目标到达任务中进行验证。
在离线分析中,可穿戴 US 系统在预测手腕和手部的四个 DoF 时达到了 [Formula: see text] 的平均[Formula: see text]值,而 sEMG 的性能达到了 [Formula: see text]= 0.60。在在线控制中,参与者平均完成目标的比例为 93%。
当专门用于 HMI 时,所提出的 US A 模式系统和处理管道可以成功地在离线和在线环境中回归手部运动学,其性能可与以前发布的接口相媲美或优于。
可穿戴式 US 技术可能提供新一代使用肌肉变形来估计肢体运动的 HMI。可穿戴式 US 系统允许在离线和在线环境中对多个自由度进行稳健的比例和同时控制。