Wen Ethan Chi Ho, Jacobse Peter H, Jiang Jingwei, Wang Ziyi, Louie Steven G, Crommie Michael F, Fischer Felix R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, California 94720, United States.
J Am Chem Soc. 2023 Sep 6;145(35):19338-19346. doi: 10.1021/jacs.3c05755. Epub 2023 Aug 23.
Substitutional heteroatom doping of bottom-up engineered 1D graphene nanoribbons (GNRs) is a versatile tool for realizing low-dimensional functional materials for nanoelectronics and sensing. Previous efforts have largely relied on replacing C-H groups lining the edges of GNRs with trigonal planar N atoms. This type of atomically precise doping, however, only results in a modest realignment of the valence band (VB) and conduction band (CB) energies. Here, we report the design, bottom-up synthesis, and spectroscopic characterization of nitrogen core-doped 5-atom-wide armchair GNRs (N-5-AGNRs) that yield much greater energy-level shifting of the GNR electronic structure. Here, the substitution of C atoms with N atoms along the backbone of the GNR introduces a single surplus π-electron per dopant that populates the electronic states associated with previously unoccupied bands. First-principles DFT-LDA calculations confirm that a sizable shift in Fermi energy (∼1.0 eV) is accompanied by a broad reconfiguration of the band structure, including the opening of a new band gap and the transition from a direct to an indirect semiconducting band gap. Scanning tunneling spectroscopy (STS) lift-off charge transport experiments corroborate the theoretical results and reveal the relationship among substitutional heteroatom doping, Fermi-level shifting, electronic band structure, and topological engineering for this new N-doped GNR.
对自下而上构建的一维石墨烯纳米带(GNRs)进行替代杂原子掺杂,是实现用于纳米电子学和传感的低维功能材料的一种通用工具。此前的研究主要依赖于用三角平面氮原子取代排列在GNRs边缘的C-H基团。然而,这种原子精确掺杂只会使价带(VB)和导带(CB)能量发生适度的重新排列。在此,我们报告了氮核掺杂的5原子宽扶手椅型GNRs(N-5-AGNRs)的设计、自下而上合成及光谱表征,这种材料能使GNR电子结构产生更大的能级移动。在此,沿着GNR主链用氮原子取代碳原子,每个掺杂剂会引入一个多余的π电子,这些电子填充到与先前未占据能带相关的电子态中。第一性原理DFT-LDA计算证实,费米能量有相当大的移动(约1.0 eV),同时能带结构发生广泛重构,包括打开一个新的带隙以及从直接半导体带隙转变为间接半导体带隙。扫描隧道谱(STS)剥离电荷传输实验证实了理论结果,并揭示了这种新型氮掺杂GNR的替代杂原子掺杂、费米能级移动、电子能带结构和拓扑工程之间的关系。