Suppr超能文献

利用自适应染色归一化技术估计癌细胞的侵袭深度,以提高表皮分割精度。

Invasion depth estimation of carcinoma cells using adaptive stain normalization to improve epidermis segmentation accuracy.

机构信息

Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland; Division of Nephrology and Intelligent Critical Care, Department of Medicine, University of Florida, Gainesville, USA.

Center for Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Finland.

出版信息

Comput Med Imaging Graph. 2023 Sep;108:102276. doi: 10.1016/j.compmedimag.2023.102276. Epub 2023 Jul 31.

Abstract

Submucosal invasion depth is a significant prognostic factor when assessing lymph node metastasis and cancer itself to plan proper treatment for the patient. Conventionally, oncologists measure the invasion depth by hand which is a laborious, subjective, and time-consuming process. The manual pathological examination by measuring accurate carcinoma cell invasion with considerable inter-observer and intra-observer variations is still challenging. The increasing use of medical imaging and artificial intelligence reveals a significant role in clinical medicine and pathology. In this paper, we propose an approach to study invasive behavior and measure the invasion depth of carcinoma from stained histopathology images. Specifically, our model includes adaptive stain normalization, color decomposition, and morphological reconstruction with adaptive thresholding to separate the epithelium with blue ratio image. Our method splits the image into multiple non-overlapping meaningful segments and successfully finds the homogeneous segments to measure accurate invasion depth. The invasion depths are measured from the inner epithelium edge to outermost pixels of the deepest part of particles in image. We conduct our experiments on skin melanoma tissue samples as well as on organotypic invasion model utilizing myoma tissue and oral squamous cell carcinoma. The performance is experimentally compared to three closely related reference methods and our method provides a superior result in measuring invasion depth. This computational technique will be beneficial for the segmentation of epithelium and other particles for the development of novel computer-aided diagnostic tools in biobank applications.

摘要

黏膜下浸润深度是评估淋巴结转移和癌症本身的重要预后因素,以便为患者制定适当的治疗方案。传统上,肿瘤学家通过手动测量浸润深度,这是一个费力、主观且耗时的过程。手动的病理检查通过测量准确的癌细胞浸润程度,存在相当大的观察者间和观察者内差异,仍然具有挑战性。医学成像和人工智能的日益普及在临床医学和病理学中发挥着重要作用。在本文中,我们提出了一种从染色组织病理学图像中研究浸润行为和测量癌浸润深度的方法。具体来说,我们的模型包括自适应染色归一化、颜色分解和形态重建,以及自适应阈值分割,以分离具有蓝色比例图像的上皮细胞。我们的方法将图像分割成多个非重叠的有意义的片段,并成功找到同质的片段来测量准确的浸润深度。浸润深度是从内上皮边缘测量到图像中颗粒最深部分的最外层像素。我们在皮肤黑色素瘤组织样本以及利用子宫肌瘤组织和口腔鳞状细胞癌的器官样浸润模型上进行了实验。实验将性能与三种密切相关的参考方法进行了比较,我们的方法在测量浸润深度方面提供了更好的结果。这种计算技术将有利于上皮和其他颗粒的分割,为生物库应用中新型计算机辅助诊断工具的开发提供帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验