文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于微观多光谱成像技术对 H-E 染色人 cSCC 的组织病理分期特征的鉴别。

Distinguishing of Histopathological Staging Features of H-E Stained Human cSCC by Microscopical Multispectral Imaging.

机构信息

Institute of Biomedical Optics and Optometry, Key Lab of Optical Instruments and Equipment for Medical Engineering, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China.

Department of Dermatology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200093, China.

出版信息

Biosensors (Basel). 2024 Sep 29;14(10):467. doi: 10.3390/bios14100467.


DOI:10.3390/bios14100467
PMID:39451680
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11506349/
Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common malignant skin tumor. Early and precise diagnosis of tumor staging is crucial for long-term outcomes. While pathological diagnosis has traditionally served as the gold standard, the assessment of differentiation levels heavily depends on subjective judgments. Therefore, how to improve the diagnosis accuracy and objectivity of pathologists has become an urgent problem to be solved. We used multispectral imaging (MSI) to enhance tumor classification. The hematoxylin and eosin (H&E) stained cSCC slides were from Shanghai Ruijin Hospital. Scale-invariant feature transform was applied to multispectral images for image stitching, while the adaptive threshold segmentation method and random forest segmentation method were used for image segmentation, respectively. Synthetic pseudo-color images effectively highlight tissue differences. Quantitative analysis confirms significant variation in the nuclear area between normal and cSCC tissues ( < 0.001), supported by an AUC of 1 in ROC analysis. The AUC within cSCC tissues is 0.57. Further study shows higher nuclear atypia in poorly differentiated cSCC tissues compared to well-differentiated cSCC ( < 0.001), also with an AUC of 1. Lastly, well differentiated cSCC tissues show more and larger keratin pearls. These results have shown that combined MSI with imaging processing techniques will improve H&E stained human cSCC diagnosis accuracy, and it will be well utilized to distinguish histopathological staging features.

摘要

皮肤鳞状细胞癌(cSCC)是第二常见的恶性皮肤肿瘤。肿瘤分期的早期和准确诊断对长期预后至关重要。虽然病理诊断一直是金标准,但分化水平的评估在很大程度上取决于主观判断。因此,如何提高病理学家的诊断准确性和客观性已成为亟待解决的问题。我们使用多光谱成像(MSI)来增强肿瘤分类。苏木精和伊红(H&E)染色的 cSCC 幻灯片来自上海瑞金医院。尺度不变特征变换(SIFT)用于多光谱图像的图像拼接,而自适应阈值分割方法和随机森林分割方法分别用于图像分割。合成伪彩色图像有效地突出了组织差异。定量分析证实正常组织和 cSCC 组织之间的核面积存在显著差异(<0.001),ROC 分析的 AUC 为 1。cSCC 组织内的 AUC 为 0.57。进一步的研究表明,与分化良好的 cSCC 相比,分化不良的 cSCC 组织中的核异型性更高(<0.001),AUC 也为 1。最后,分化良好的 cSCC 组织显示出更多和更大的角蛋白珠。这些结果表明,将 MSI 与成像处理技术相结合将提高 H&E 染色的人类 cSCC 诊断准确性,并将很好地用于区分组织病理学分期特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/3e950a9682d4/biosensors-14-00467-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/dc5bd3e783dd/biosensors-14-00467-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/08473bca9d57/biosensors-14-00467-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/b8ae3d5d5ddf/biosensors-14-00467-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/22299dc8ad22/biosensors-14-00467-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/aa72541fa53c/biosensors-14-00467-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/3e950a9682d4/biosensors-14-00467-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/dc5bd3e783dd/biosensors-14-00467-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/08473bca9d57/biosensors-14-00467-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/b8ae3d5d5ddf/biosensors-14-00467-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/22299dc8ad22/biosensors-14-00467-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/aa72541fa53c/biosensors-14-00467-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48a/11506349/3e950a9682d4/biosensors-14-00467-g006.jpg

相似文献

[1]
Distinguishing of Histopathological Staging Features of H-E Stained Human cSCC by Microscopical Multispectral Imaging.

Biosensors (Basel). 2024-9-29

[2]
Segmentation and Recognition of the Pathological Features of Squamous Cell Carcinoma of the Skin Based on Multispectral Imaging.

J Clin Med. 2022-7-1

[3]
Digital staining for multispectral images of pathological tissue specimens based on combined classification of spectral transmittance.

Comput Med Imaging Graph. 2005-12

[4]
Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.

Cytometry A. 2017-8

[5]
Detection of malignant melanoma in H&E-stained images using deep learning techniques.

Tissue Cell. 2021-12

[6]
Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

BMC Med Imaging. 2014-2-12

[7]
Interobserver variation among pathologists for delineation of tumor on H&E-sections of laryngeal and hypopharyngeal carcinoma. How good is the gold standard?

Acta Oncol. 2016

[8]
A novel method for tissue segmentation in high-resolution H&E-stained histopathological whole-slide images.

Comput Med Imaging Graph. 2020-1

[9]
p75(NGFR) immunostaining for the detection of perineural invasion by cutaneous squamous cell carcinoma.

Dermatol Surg. 2006-2

[10]
Cutaneous squamous cell carcinoma staging may influence management in users: A survey study.

Cancer Med. 2022-1

本文引用的文献

[1]
Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence.

Sci Rep. 2024-7-27

[2]
Invasion depth estimation of carcinoma cells using adaptive stain normalization to improve epidermis segmentation accuracy.

Comput Med Imaging Graph. 2023-9

[3]
Current Approach and Future Directions in the Diagnosis and Prognosis of Keratinocyte Carcinomas.

J Clin Med. 2023-6-11

[4]
Imaging perfusion changes in oncological clinical applications by hyperspectral imaging: a literature review.

Radiol Oncol. 2022-12-1

[5]
Recent Advances in the Diagnosis and Management of High-Risk Cutaneous Squamous Cell Carcinoma.

Cancers (Basel). 2022-7-21

[6]
Segmentation and Recognition of the Pathological Features of Squamous Cell Carcinoma of the Skin Based on Multispectral Imaging.

J Clin Med. 2022-7-1

[7]
Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains.

Sci Rep. 2022-6-4

[8]
Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique.

Cancers (Basel). 2022-3-21

[9]
NCCN Guidelines® Insights: Squamous Cell Skin Cancer, Version 1.2022.

J Natl Compr Canc Netw. 2021-12

[10]
Local Chemotherapy as an Adjuvant Treatment in Unresectable Squamous Cell Carcinoma: What Do We Know So Far?

Curr Oncol. 2021-6-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索