Dong Haobo, Hu Xueying, Liu Ruirui, Ouyang Mengzheng, He Hongzhen, Wang Tianlei, Gao Xuan, Dai Yuhang, Zhang Wei, Liu Yiyang, Zhou Yongquan, Brett Dan J L, Parkin Ivan P, Shearing Paul R, He Guanjie
Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
Angew Chem Int Ed Engl. 2023 Oct 9;62(41):e202311268. doi: 10.1002/anie.202311268. Epub 2023 Sep 1.
For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO , the affinity of Zn ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm ).
对于锌离子电池(ZIBs),锌的不均匀沉积/溶解会导致高极化和低库仑效率(CE),阻碍了ZIBs的大规模应用。在此,受生物质海藻植物的启发,使用阴离子聚电解质海藻酸(SA)在锌阳极上原位形成高性能固体电解质界面(SEI)层。由于-COO的阴离子基团,锌离子与海藻酸的亲和力诱导了一个排列良好的加速通道,以实现均匀沉积。这种SEI调节了锌的去溶剂化结构,并促进了致密的Zn(002)晶面的形成。即使在高放电深度(DOD)条件下,涂覆SA的锌阳极仍保持稳定的锌溶解/沉积行为,电位差较低(0.114 V)。根据经典成核理论,涂覆SA的锌的成核能比裸锌少97%,导致成核速率更快。用涂覆SA的电极组装的Zn||Cu电池在1400次循环中表现出99.8%的出色平均CE。该设计在软包电池中得到成功验证,即使在高阴极质量负载(>10 mg/cm)下,涂覆SA的锌的容量保持率为96.9%,而裸锌阳极的容量保持率为59.1%。