Zhao Zishao, Zhou Xuanyi, Zhang Biao, Huang Fenfen, Wang Yan, Ma Zengsheng, Liu Jun
National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Hunan, 411105, China.
School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan, 411201, China.
Angew Chem Int Ed Engl. 2023 Sep 25;62(39):e202308738. doi: 10.1002/anie.202308738. Epub 2023 Aug 17.
Lithium fluoride (LiF) at the solid electrolyte interface (SEI) contributes to the stable operation of polymer-based solid-state lithium metal batteries. Currently, most of the methods for constructing lithium fluoride SEI are based on the design of polar groups of fillers. However, the mechanism behind how steric hindrance of fillers impacts LiF formation remains unclear. This study synthesizes three kinds of porous polyacetal amides (PAN-X, X=NH , NH-CH , N-(CH ) ) with varying steric hindrances by regulating the number of methyl substitutions of nitrogen atoms on the reaction monomer, which are incorporated into polymer composite solid electrolytes, to investigate the regulation mechanism of steric hindrance on the content of lithium fluoride in SEI. The results show that bis(trifluoromethanesulfonyl)imide (TFSI ) will compete for the charge without steric effect, while excessive steric hindrance hinders the interaction between TFSI and polar groups, reducing charge acquisition. Only when one hydrogen atom on the amino group is replaced by a methyl group, steric hindrance from the methyl group prevents TFSI from capturing charge in that direction, thereby facilitating the transfer of charge from the polar group to a separate TFSI and promoting maximum LiF formation. This work provides a novel perspective on constructing LiF-rich SEI.
固体电解质界面(SEI)处的氟化锂(LiF)有助于聚合物基固态锂金属电池的稳定运行。目前,大多数构建氟化锂SEI的方法都是基于填料极性基团的设计。然而,填料的空间位阻如何影响LiF形成的背后机制仍不清楚。本研究通过调节反应单体上氮原子的甲基取代数,合成了三种具有不同空间位阻的多孔聚乙酰胺(PAN-X,X = NH ,NH-CH ,N-(CH ) ),将其引入聚合物复合固体电解质中,以研究空间位阻对SEI中氟化锂含量的调控机制。结果表明,双(三氟甲磺酰)亚胺(TFSI )在没有空间效应的情况下会竞争电荷,而过大的空间位阻会阻碍TFSI与极性基团之间的相互作用,减少电荷获取。只有当氨基上的一个氢原子被甲基取代时,甲基的空间位阻会阻止TFSI在该方向捕获电荷,从而促进电荷从极性基团转移到单独的TFSI上,并促进最大程度的LiF形成。这项工作为构建富含LiF的SEI提供了新的视角。