Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States.
Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.
Bioconjug Chem. 2023 Sep 20;34(9):1585-1595. doi: 10.1021/acs.bioconjchem.3c00269. Epub 2023 Aug 24.
An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids. Cargo-loading to the internal cavity is achieved with thiol-reactive small molecules. However, the internal loading capacity of these nanoparticles is limited by the presence of a single reactive cysteine (C75) per coat protein with low inherent reactivity. Here, we use structure-based design to engineer cysteine-added mutants of PhMV VLPs that display increased reactivity toward thiol-reactive small molecules. Specifically, the A31C and S137C mutants show a greater than 10-fold increased rate of reactivity towards thiol-reactive small molecules, and PhMV Cys1 (A31C), PhMV Cys2 (S137C), and PhMV Cys1+2 (double mutant) VLPs display up to three-fold increased internal loading of the small molecule chemotherapeutics aldoxorubicin and vcMMAE and up to four-fold increased internal loading of the MRI imaging reagent DOTA(Gd). These results further improve upon a promising plant virus-based nanocarrier system for use in targeted delivery of small-molecule drugs and imaging reagents in vivo.
精准医学中一个持续存在的挑战是如何有效地将治疗药物递送到目标组织/器官。纳米颗粒递送系统具有通过改善药代动力学、组织靶向性和包裹货物的稳定性来克服药物和基因递送传统限制的潜力。Physalis mottle virus(PhMV)样纳米颗粒是一种很有前途的纳米载体平台,可通过反应性氨基酸在外部和内部表面进行化学靶向。通过具有硫醇反应性的小分子来实现内部空腔的货物装载。然而,这些纳米颗粒的内部装载能力受到每个外壳蛋白中存在的单个反应性半胱氨酸(C75)的限制,其固有反应性较低。在这里,我们使用基于结构的设计来构建 PhMV VLPs 的添加半胱氨酸的突变体,这些突变体对硫醇反应性小分子表现出更高的反应性。具体而言,A31C 和 S137C 突变体对硫醇反应性小分子的反应速率提高了 10 倍以上,而 PhMV Cys1(A31C)、PhMV Cys2(S137C)和 PhMV Cys1+2(双突变体)VLPs 对小分子化疗药物阿霉素和 vcMMAE 的内部装载量增加了 3 倍,对 MRI 造影剂 DOTA(Gd)的内部装载量增加了 4 倍。这些结果进一步改进了一种有前途的植物病毒基纳米载体系统,用于在体内靶向递小分子药物和成像试剂。