Suppr超能文献

具有扩大内部载物量的酸浆斑驳病毒样纳米载体。

Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity.

机构信息

Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States.

Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States.

出版信息

Bioconjug Chem. 2023 Sep 20;34(9):1585-1595. doi: 10.1021/acs.bioconjchem.3c00269. Epub 2023 Aug 24.

Abstract

An ongoing challenge in precision medicine is the efficient delivery of therapeutics to tissues/organs of interest. Nanoparticle delivery systems have the potential to overcome traditional limitations of drug and gene delivery through improved pharmacokinetics, tissue targeting, and stability of encapsulated cargo. Physalis mottle virus (PhMV)-like nanoparticles are a promising nanocarrier platform which can be chemically targeted on the exterior and interior surfaces through reactive amino acids. Cargo-loading to the internal cavity is achieved with thiol-reactive small molecules. However, the internal loading capacity of these nanoparticles is limited by the presence of a single reactive cysteine (C75) per coat protein with low inherent reactivity. Here, we use structure-based design to engineer cysteine-added mutants of PhMV VLPs that display increased reactivity toward thiol-reactive small molecules. Specifically, the A31C and S137C mutants show a greater than 10-fold increased rate of reactivity towards thiol-reactive small molecules, and PhMV Cys1 (A31C), PhMV Cys2 (S137C), and PhMV Cys1+2 (double mutant) VLPs display up to three-fold increased internal loading of the small molecule chemotherapeutics aldoxorubicin and vcMMAE and up to four-fold increased internal loading of the MRI imaging reagent DOTA(Gd). These results further improve upon a promising plant virus-based nanocarrier system for use in targeted delivery of small-molecule drugs and imaging reagents in vivo.

摘要

精准医学中一个持续存在的挑战是如何有效地将治疗药物递送到目标组织/器官。纳米颗粒递送系统具有通过改善药代动力学、组织靶向性和包裹货物的稳定性来克服药物和基因递送传统限制的潜力。Physalis mottle virus(PhMV)样纳米颗粒是一种很有前途的纳米载体平台,可通过反应性氨基酸在外部和内部表面进行化学靶向。通过具有硫醇反应性的小分子来实现内部空腔的货物装载。然而,这些纳米颗粒的内部装载能力受到每个外壳蛋白中存在的单个反应性半胱氨酸(C75)的限制,其固有反应性较低。在这里,我们使用基于结构的设计来构建 PhMV VLPs 的添加半胱氨酸的突变体,这些突变体对硫醇反应性小分子表现出更高的反应性。具体而言,A31C 和 S137C 突变体对硫醇反应性小分子的反应速率提高了 10 倍以上,而 PhMV Cys1(A31C)、PhMV Cys2(S137C)和 PhMV Cys1+2(双突变体)VLPs 对小分子化疗药物阿霉素和 vcMMAE 的内部装载量增加了 3 倍,对 MRI 造影剂 DOTA(Gd)的内部装载量增加了 4 倍。这些结果进一步改进了一种有前途的植物病毒基纳米载体系统,用于在体内靶向递小分子药物和成像试剂。

相似文献

1
Physalis Mottle Virus-Like Nanocarriers with Expanded Internal Loading Capacity.
Bioconjug Chem. 2023 Sep 20;34(9):1585-1595. doi: 10.1021/acs.bioconjchem.3c00269. Epub 2023 Aug 24.
2
Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs.
Biomacromolecules. 2017 Dec 11;18(12):4141-4153. doi: 10.1021/acs.biomac.7b01196. Epub 2017 Nov 16.
3
iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery.
Small Sci. 2023 Aug;3(8). doi: 10.1002/smsc.202300067. Epub 2023 Jun 27.
4
Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Imaging.
ACS Appl Mater Interfaces. 2019 May 22;11(20):18213-18223. doi: 10.1021/acsami.9b03956. Epub 2019 May 10.
5
Doxorubicin-Loaded Physalis Mottle Virus Particles Function as a pH-Responsive Prodrug Enabling Cancer Therapy.
Biotechnol J. 2020 Dec;15(12):e2000077. doi: 10.1002/biot.202000077. Epub 2020 Oct 8.
6
Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis Mottle Virus for Cancer Therapy.
Mol Pharm. 2020 Dec 7;17(12):4629-4636. doi: 10.1021/acs.molpharmaceut.0c00834. Epub 2020 Nov 13.
7
Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine.
Cancers (Basel). 2021 Jun 10;13(12):2909. doi: 10.3390/cancers13122909.
8
Virus-like Particles Armored by an Endoskeleton.
Nano Lett. 2024 Mar 13;24(10):2989-2997. doi: 10.1021/acs.nanolett.3c03806. Epub 2024 Jan 31.
9
Mutation of interfacial residues disrupts subunit folding and particle assembly of Physalis mottle tymovirus.
J Biol Chem. 2003 Feb 21;278(8):6145-52. doi: 10.1074/jbc.M207992200. Epub 2002 Dec 10.
10
Three-dimensional structure of physalis mottle virus: implications for the viral assembly.
J Mol Biol. 1999 Jun 18;289(4):919-34. doi: 10.1006/jmbi.1999.2787.

引用本文的文献

2
Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals.
Bioengineering (Basel). 2024 Dec 25;12(1):7. doi: 10.3390/bioengineering12010007.
4
Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy.
Molecules. 2023 Nov 20;28(22):7679. doi: 10.3390/molecules28227679.

本文引用的文献

1
iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery.
Small Sci. 2023 Aug;3(8). doi: 10.1002/smsc.202300067. Epub 2023 Jun 27.
2
A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials.
J Liposome Res. 2024 Mar;34(1):135-177. doi: 10.1080/08982104.2023.2204372. Epub 2023 May 5.
3
Rip it, stitch it, click it: A Chemist's guide to VLP manipulation.
Virology. 2022 Dec;577:105-123. doi: 10.1016/j.virol.2022.10.008. Epub 2022 Oct 31.
4
Lipid nanoparticles for mRNA delivery.
Nat Rev Mater. 2021;6(12):1078-1094. doi: 10.1038/s41578-021-00358-0. Epub 2021 Aug 10.
5
Engineering precision nanoparticles for drug delivery.
Nat Rev Drug Discov. 2021 Feb;20(2):101-124. doi: 10.1038/s41573-020-0090-8. Epub 2020 Dec 4.
6
Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis Mottle Virus for Cancer Therapy.
Mol Pharm. 2020 Dec 7;17(12):4629-4636. doi: 10.1021/acs.molpharmaceut.0c00834. Epub 2020 Nov 13.
7
Doxorubicin-Loaded Physalis Mottle Virus Particles Function as a pH-Responsive Prodrug Enabling Cancer Therapy.
Biotechnol J. 2020 Dec;15(12):e2000077. doi: 10.1002/biot.202000077. Epub 2020 Oct 8.
8
Development of High-Drug-Loading Nanoparticles.
Chempluschem. 2020 Sep;85(9):2143-2157. doi: 10.1002/cplu.202000496. Epub 2020 Aug 31.
9
Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery.
Biomater Sci. 2020 Jul 21;8(14):3935-3943. doi: 10.1039/d0bm00683a. Epub 2020 Jun 17.
10
Prediction of disulfide bond engineering sites using a machine learning method.
Sci Rep. 2020 Jun 25;10(1):10330. doi: 10.1038/s41598-020-67230-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验