Suppr超能文献

通过包封和截留固定红球菌:一种处理苦柑橘副产物的绿色解决方案。

Immobilization of Rhodococcus by encapsulation and entrapment: a green solution to bitter citrus by-products.

作者信息

Pilar-Izquierdo María C, López-Fouz María, Ortega Natividad, Busto María D

机构信息

Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos, S/N, 09001, Burgos, Spain.

出版信息

Appl Microbiol Biotechnol. 2023 Oct;107(20):6377-6388. doi: 10.1007/s00253-023-12724-9. Epub 2023 Aug 24.

Abstract

Debittering of citrus by-products is required to obtain value-added compounds for application in the food industry (e.g., dietary fiber, bioactive compounds). In this work, the immobilization of Rhodococcus fascians cells by encapsulation in Ca-alginate hollow beads and entrapment in poly(vinyl alcohol)/polyethylene glycol (PVA/PEG) cryogels was studied as an alternative to chemical treatments for degrading the bitter compound limonin. Previously, the Rhodococcus strain was adapted using orange peel extract to increase its tolerance to limonoids. The optimal conditions for the encapsulation of microbial cells were 2% Na-alginate, 4% CaCl, 4% carboxymethylcellulose (CMC), and a microbial load of 0.6 OD (optical density at 600 nm). For immobilization by entrapment, the optimal conditions were 8% PVA, 8% PEG, and 0.6 OD microbial load. Immobilization by entrapment protected microbial cells better than encapsulation against the citrus medium stress conditions (acid pH and composition). Thus, under optimal immobilization conditions, limonin degradation was 32 and 28% for immobilization in PVA/PEG gels and in hollow beads, respectively, in synthetic juice (pH 3) after 72 h at 25 °C. Finally, the microbial cells entrapped in the cryogels showed a higher operational stability in orange juice than the encapsulated cells, with four consecutive cycles of reuse (runs of 24 h at 25 °C). KEY POINTS: • Increased tolerance to limonoids by adapting R. fascians with citrus by-products. • Entrapment provided cells with favorable microenvironment for debittering at acid pH. • Cryogel-immobilized cells showed the highest limonin degradation in citrus products.

摘要

为了获得可用于食品工业的增值化合物(如膳食纤维、生物活性化合物),需要去除柑橘类副产品的苦味。在这项工作中,研究了通过将法氏红球菌细胞封装在海藻酸钙空心珠中以及包埋在聚乙烯醇/聚乙二醇(PVA/PEG)冷冻凝胶中来固定化细胞,作为降解苦味化合物柠檬苦素的化学处理方法的替代方案。此前,使用橙皮提取物对红球菌菌株进行了驯化,以提高其对柠檬苦素类化合物的耐受性。微生物细胞包封的最佳条件为2%海藻酸钠、4%氯化钙、4%羧甲基纤维素(CMC)和0.6 OD(600 nm处的光密度)的微生物负载量。对于包埋固定化,最佳条件为8% PVA、8% PEG和0.6 OD微生物负载量。与包封相比,包埋固定化能更好地保护微生物细胞免受柑橘类培养基应激条件(酸性pH值和成分)的影响。因此,在最佳固定化条件下,在25℃下72小时后,在合成果汁(pH 3)中,PVA/PEG凝胶和空心珠中固定化的柠檬苦素降解率分别为32%和28%。最后,冷冻凝胶中包埋的微生物细胞在橙汁中的操作稳定性高于包封细胞,可连续重复使用四个循环(在25℃下运行24小时)。要点:• 通过用柑橘类副产品驯化法氏红球菌提高对柠檬苦素类化合物的耐受性。• 包埋为细胞提供了在酸性pH值下去除苦味的有利微环境。• 冷冻凝胶固定化细胞在柑橘类产品中柠檬苦素降解率最高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验