Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA.
Gynecologic Oncology and Developmental Therapeutics Research Program, Henry Ford Health Hospital, Detroit, MI, 48202, USA.
Mol Neurobiol. 2024 Jan;61(1):397-410. doi: 10.1007/s12035-023-03546-x. Epub 2023 Aug 24.
The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.
未成熟/少突胶质前体细胞(pre-OLs)和成熟少突胶质细胞(OLs)的代谢需求不同。从 pre-OLs 到 OLs 的少突胶质细胞成熟的代谢调控尚不完全清楚。在这里,我们表明 OLs 的终末成熟和更高的线粒体呼吸是一个通过丙酮酸脱氢酶复合物(Pdh)控制的综合过程。综合生物能量学和代谢研究表明,OLs 的线粒体呼吸高于 pre-OLs。我们的信号研究表明,OLs 中线粒体呼吸活性的增加是由 Pdh 的激活介导的,这是由于抑制了磷酸化并抑制 Pdh 活性的丙酮酸脱氢酶激酶-1(Pdhk1)。因此,当 Pdhk1 直接在 pre-OLs 中表达时,它们无法成熟为 OLs。虽然 Pdh 通过其氧化脱羧将丙酮酸转化为乙酰辅酶 A,但我们的研究表明,Pdh 依赖性的来自丙酮酸的乙酰辅酶 A 生成有助于 bHLH 家族转录因子、少突胶质细胞转录因子 1(Olig1)的乙酰化,已知其参与 OL 成熟。通过在 pre-OLs 中直接表达 Pdhk1 抑制 Pdh 会阻止 Olig1 乙酰化和 OL 成熟。使用脱髓鞘的 Cuprizone 模型,我们表明在脱髓鞘阶段 Pdh 失活,但在 Cuprizone 撤去后再髓鞘阶段得到恢复。此外,Pdh 活性状态与 Cuprizone 模型中的 Olig1 乙酰化状态相关。因此,Pdh 代谢节点的激活允许强大的线粒体呼吸和激活少突胶质细胞终末成熟所需的分子程序。我们的发现为发育生物学开辟了一个新的对话,将细胞发育和代谢联系起来。这些发现对于包括多发性硬化症在内的各种脱髓鞘疾病的治疗方法的发展具有深远的意义。