Suppr超能文献

开发和验证一种列线图,以确定心脏骤停患者的神经学结局。

The development and validation of a nomogram to determine neurological outcomes in cardiac arrest patients.

机构信息

Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou City, 350014, China, No 420 Fuma Road, Jinan District, Fujian Province.

Department of Otorhinolaryngology Head and Neck Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.

出版信息

BMC Anesthesiol. 2023 Aug 24;23(1):289. doi: 10.1186/s12871-023-02251-5.

Abstract

OBJECTIVES

This study aimed to investigate the variables that influence neurological functional restoration in cardiac arrest patients and construct a nomogram to predict neurofunctional prognosis.

PATIENTS AND METHODS

We extracted the data from the Dryad database. Associations between patient variables and neurological outcomes were examined by logistic regression models. On the basis of these predictors, a prognostic nomogram was constructed. The identification and calibration of the prognostic nomogram were evaluated through the receiver operating characteristic (ROC) curve, the calibration curve, and the concordance index (C-index).

RESULTS

A total of 374 cardiac arrest individuals were recruited in the research. Sixty percent of the participants had an adverse neurological result. The multivariable logistic regression analysis for poor neurological recovery, which showed patient age ≥ 65 years, previous neurological disease, witnessed arrest, bystander cardio-pulmonary resuscitation(CPR), cardiac arrest presenting with a non-shockable rhythm, total epinephrine dose ≥ 2.5 mg at the time of resuscitation and acute kidney injury(AKI) remained independent predictors for neurological outcomes.

CONCLUSIONS

The novel nomogram based on clinical characteristics is an efficient tool to predict neurological outcomes in cardiac arrest patients, which may help clinicians identifying high-risk patients and tailoring personalized treatment regimens.

摘要

目的

本研究旨在探讨影响心脏骤停患者神经功能恢复的变量,并构建列线图以预测神经功能预后。

患者与方法

我们从 Dryad 数据库中提取数据。通过逻辑回归模型检查患者变量与神经结局之间的关联。基于这些预测因子,构建预后列线图。通过接收者操作特征(ROC)曲线、校准曲线和一致性指数(C 指数)评估预后列线图的识别和校准。

结果

研究共纳入 374 名心脏骤停患者,其中 60%的患者神经结局不良。多变量逻辑回归分析显示,年龄≥65 岁、既往神经系统疾病、目击性骤停、旁观者心肺复苏(CPR)、心脏骤停时呈现非可电击节律、复苏时肾上腺素总剂量≥2.5mg 和急性肾损伤(AKI)是神经结局的独立预测因子。

结论

基于临床特征的新型列线图是预测心脏骤停患者神经结局的有效工具,可能有助于临床医生识别高危患者并制定个性化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bdd/10463846/e3a4282c7eef/12871_2023_2251_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验