Suppr超能文献

用于高效低温柔性钙钛矿太阳能电池的界面工程

Interfacial Engineering for Efficient Low-Temperature Flexible Perovskite Solar Cells.

作者信息

Cai Weilun, Yang Tinghuan, Liu Chou, Wang Yajie, Wang Shiqiang, Du Yachao, Wu Nan, Huang Wenliang, Wang Shumei, Wang Zhichao, Chen Xin, Feng Jiangshan, Zhao Guangtao, Ding Zicheng, Pan Xu, Zou Pengchen, Yao Jianxi, Liu Shengzhong Frank, Zhao Kui

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.

Key Laboratory of Novel Thin-Film Solar Cells Institute of Plasma Physics Chinese Academy of Sciences, Hefei, 230031, China.

出版信息

Angew Chem Int Ed Engl. 2023 Oct 9;62(41):e202309398. doi: 10.1002/anie.202309398. Epub 2023 Sep 4.

Abstract

Photovoltaic technology with low weight, high specific power in cold environments, and compatibility with flexible fabrication is highly desired for near-space vehicles and polar region applications. Herein, we demonstrate efficient low-temperature flexible perovskite solar cells by improving the interfacial contact between electron-transport layer (ETL) and perovskite layer. We find that the adsorbed oxygen active sites and oxygen vacancies of flexible tin oxide (SnO ) ETL layer can be effectively decreased by incorporating a trace amount of titanium tetrachloride (TiCl ). The effective defects elimination at the interfacial increases the electron mobility of flexible SnO layer, regulates band alignment at the perovskite/SnO interface, induces larger perovskite crystal growth, and improves charge collection efficiency in a complete solar cell. Correspondingly, the improved interfacial contact transforms into high-performance solar cells under one-sun illumination (AM 1.5G) with efficiencies up to 23.7 % at 218 K, which might open up a new era of application of this emerging flexible photovoltaic technology to low-temperature environments such as near-space and polar regions.

摘要

对于近太空飞行器和极地地区应用而言,非常需要具有低重量、在寒冷环境中高比功率以及与柔性制造兼容的光伏技术。在此,我们通过改善电子传输层(ETL)与钙钛矿层之间的界面接触,展示了高效的低温柔性钙钛矿太阳能电池。我们发现,通过掺入痕量的四氯化钛(TiCl₄),可以有效减少柔性氧化锡(SnO)ETL层的吸附氧活性位点和氧空位。界面处有效的缺陷消除增加了柔性SnO层的电子迁移率,调节了钙钛矿/SnO界面处的能带排列,诱导了更大的钙钛矿晶体生长,并提高了完整太阳能电池中的电荷收集效率。相应地,改善后的界面接触在一个太阳光照(AM 1.5G)下转化为高性能太阳能电池,在218 K时效率高达23.7%,这可能为这种新兴的柔性光伏技术应用于近太空和极地地区等低温环境开启一个新时代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验