Suppr超能文献

多功能聚合物调控的SnO纳米晶体增强界面接触,用于高效稳定的平面钙钛矿太阳能电池。

Multifunctional Polymer-Regulated SnO Nanocrystals Enhance Interface Contact for Efficient and Stable Planar Perovskite Solar Cells.

作者信息

You Shuai, Zeng Haipeng, Ku Zhiliang, Wang Xiaoze, Wang Zhen, Rong Yaoguang, Zhao Yang, Zheng Xin, Luo Long, Li Lin, Zhang Shujing, Li Min, Gao Xingyu, Li Xiong

机构信息

Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, China.

出版信息

Adv Mater. 2020 Oct;32(43):e2003990. doi: 10.1002/adma.202003990. Epub 2020 Sep 21.

Abstract

Perovskite solar cells (PSCs) have rapidly developed and achieved power conversion efficiencies of over 20% with diverse technical routes. Particularly, planar-structured PSCs can be fabricated with low-temperature (≤150 °C) solution-based processes, which is energy efficient and compatible with flexible substrates. Here, the efficiency and stability of planar PSCs are enhanced by improving the interface contact between the SnO electron-transport layer (ETL) and the perovskite layer. A biological polymer (heparin potassium, HP) is introduced to regulate the arrangement of SnO nanocrystals, and induce vertically aligned crystal growth of perovskites on top. Correspondingly, SnO -HP-based devices can demonstrate an average efficiency of 23.03% on rigid substrates with enhanced open-circuit voltage (V ) of 1.162 V and high reproducibility. Attributed to the strengthened interface binding, the devices obtain high operational stability, retaining 97% of their initial performance (power conversion efficiency, PCE > 22%) after 1000 h operation at their maximum power point under 1 sun illumination. Besides, the HP-modified SnO ETL exhibits promising potential for application in flexible and large-area devices.

摘要

钙钛矿太阳能电池(PSCs)发展迅速,通过多种技术路线实现了超过20%的功率转换效率。特别是,平面结构的PSCs可以通过低温(≤150°C)溶液法制备,这种方法节能且与柔性基板兼容。在此,通过改善SnO电子传输层(ETL)与钙钛矿层之间的界面接触,提高了平面PSCs的效率和稳定性。引入一种生物聚合物(肝素钾,HP)来调节SnO纳米晶体的排列,并诱导钙钛矿在顶部垂直取向晶体生长。相应地,基于SnO -HP的器件在刚性基板上可实现平均效率为23.03%,开路电压(V )提高到1.162 V,且具有高重现性。由于界面结合增强,器件具有高运行稳定性,在1个太阳光照下最大功率点运行1000小时后,仍保留其初始性能的97%(功率转换效率,PCE>22%)。此外,HP修饰的SnO ETL在柔性和大面积器件应用中展现出广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验