Suppr超能文献

代谢物介导的细菌抗生素耐药性的表面增强拉曼光谱研究。

Metabolite-Mediated Bacterial Antibiotic Resistance Revealed by Surface-Enhanced Raman Spectroscopy.

机构信息

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Virginia Tech Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology Center (VTSuN), Blacksburg, Virginia 24061, United States.

出版信息

Environ Sci Technol. 2023 Sep 12;57(36):13375-13383. doi: 10.1021/acs.est.3c04001. Epub 2023 Aug 25.

Abstract

A prompt on-site, real-time method to detect bacterial antibiotic resistance is crucial for controlling the spread of resistance. Herein, we report the use of surface-enhanced Raman spectroscopy (SERS) for the monitoring of bioactive metabolites produced by ampicillin-resistant strains and identification of mechanisms underlying antibiotic resistance. The results indicate that the blue-green pigment pyocyanin (PYO) dominates the metabolite signals and is significantly enhanced upon exposure to subminimal inhibitory concentrations of ampicillin. PYO accumulates during exponential growth and subsequently either diffuses into the culture medium or is consumed in response to nutrient deprivation. The SERS spectra further reveal that the production of some intermediate substances such as polysaccharides and amino acids is minimally impacted and that nutrient consumption remains consistent. Moreover, the intensity changes and peak shifts observed in the SERS spectra of non-PYO-producing ampicillin-susceptible demonstrate that exogenously added PYO enhances tolerance to ampicillin to some extent. These results indicate that PYO mediates antibiotic resistance not only in the parent species but also in cocultured bacterial strains. The metabolic SERS signal provides new insight regarding antibiotic resistance with promising applications for both environmental monitoring and rapid clinical detection.

摘要

一种能够现场实时检测细菌抗生素耐药性的方法对于控制耐药性的传播至关重要。在此,我们报告了使用表面增强拉曼光谱(SERS)来监测氨苄青霉素耐药菌株产生的生物活性代谢物,并鉴定抗生素耐药性的机制。结果表明,蓝绿色色素绿脓菌素(PYO)主导代谢物信号,并且在暴露于亚最小抑菌浓度的氨苄青霉素时显著增强。PYO 在指数生长期积累,随后要么扩散到培养基中,要么在营养物质耗尽时被消耗掉。SERS 光谱进一步表明,一些中间物质如多糖和氨基酸的产生受到的影响最小,并且营养物质的消耗保持一致。此外,在产生非 PYO 的氨苄青霉素敏感的 SERS 光谱中观察到的强度变化和峰位移表明,外源性添加的 PYO 在某种程度上增强了对氨苄青霉素的耐受性。这些结果表明,PYO 不仅在母种中,而且在共培养的细菌菌株中介导抗生素耐药性。代谢 SERS 信号为抗生素耐药性提供了新的见解,有望在环境监测和快速临床检测方面得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验