Department of Ecology and Evolution, University of Chicago, Chicago, United States of America.
Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, United States of America.
PLoS Pathog. 2023 Aug 25;19(8):e1011603. doi: 10.1371/journal.ppat.1011603. eCollection 2023 Aug.
Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.
抗体是 B 细胞谱系在选择压力下进化的结果,这种选择压力有利于提高抗原识别能力,这个过程被称为亲和力成熟。人们经常报道,针对 HIV、流感和 SARS-CoV-2 等病原体的高亲和力抗体是由 B 细胞产生的,这些 B 细胞的受体(抗体的前体)由特定的免疫球蛋白基因编码。这就提出了一个可能性,即 B 细胞库中特定的种系等位基因的存在是抗体反应质量的主要决定因素。或者,种系等位基因形成高亲和力受体的初始差异可能会在亲和力成熟过程中被偶然事件所克服。我们首先在模拟中研究了这些情况:当种系编码的适应性差异相对于体细胞突变的速率和效应大小变化很大时,相同的种系等位基因会持续主导不同个体的反应。相比之下,如果种系编码的优势很容易被后续突变所克服,那么等位基因的使用会随着时间的推移而变得越来越多样化,我们随后在实验感染流感病毒的小鼠中观察到了这种模式。我们研究了亲和力成熟是否会在不同的遗传背景下强烈选择特定的氨基酸基序,但没有发现趋同到相似 CDR3 序列或氨基酸取代的证据。这些结果表明,尽管种系编码的特异性可以导致个体之间产生相似的免疫反应,但多样化的高亲和力进化途径限制了对感染和疫苗接种的遗传可预测性。