Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3005, USA.
Nature. 2012 Sep 27;489(7417):566-70. doi: 10.1038/nature11371. Epub 2012 Aug 29.
Influenza viruses take a yearly toll on human life despite efforts to contain them with seasonal vaccines. These viruses evade human immunity through the evolution of variants that resist neutralization. The identification of antibodies that recognize invariant structures on the influenza haemagglutinin (HA) protein have invigorated efforts to develop universal influenza vaccines. Specifically, antibodies to the highly conserved stem region of HA neutralize diverse viral subtypes. These antibodies largely derive from a specific antibody gene, heavy-chain variable region IGHV1-69, after limited affinity maturation from their germline ancestors, but how HA stimulates naive B cells to mature and induce protective immunity is unknown. To address this question, we analysed the structural and genetic basis for their engagement and maturation into broadly neutralizing antibodies. Here we show that the germline-encoded precursors of these antibodies act as functional B-cell antigen receptors (BCRs) that initiate subsequent affinity maturation. Neither the germline precursor of a prototypic antibody, CR6261 (ref. 3), nor those of two other natural human IGHV1-69 antibodies, bound HA as soluble immunoglobulin-G (IgG). However, all three IGHV1-69 precursors engaged HA when the antibody was expressed as cell surface IgM. HA triggered BCR-associated tyrosine kinase signalling by germline transmembrane IgM. Recognition and virus neutralization was dependent solely on the heavy chain, and affinity maturation of CR6261 required only seven amino acids in the complementarity-determining region (CDR) H1 and framework region 3 (FR3) to restore full activity. These findings provide insight into the initial events that lead to the generation of broadly neutralizing antibodies to influenza, informing the rational design of vaccines to elicit such antibodies and providing a model relevant to other infectious diseases, including human immunodeficiency virus/AIDS. The data further suggest that selected immunoglobulin genes recognize specific protein structural 'patterns' that provide a substrate for further affinity maturation.
尽管人们努力通过季节性疫苗来控制流感病毒,但这些病毒每年仍会对人类生命造成影响。这些病毒通过进化产生能够抵抗中和作用的变异体来逃避人体免疫力。鉴定出能够识别流感血凝素 (HA) 蛋白上不变结构的抗体,这激发了开发通用流感疫苗的努力。具体来说,针对 HA 高度保守茎部的抗体可中和多种病毒亚型。这些抗体主要来自特定的抗体基因,重链可变区 IGHV1-69,经过其种系前体的有限亲和力成熟后,但 HA 如何刺激幼稚 B 细胞成熟并诱导保护性免疫尚不清楚。为了解决这个问题,我们分析了它们结合和成熟为广泛中和抗体的结构和遗传基础。在这里,我们表明这些抗体的种系编码前体作为功能性 B 细胞抗原受体 (BCR) 起作用,启动随后的亲和力成熟。既不是原型抗体 CR6261(参考文献 3)的种系前体,也不是另外两种天然人类 IGHV1-69 抗体的种系前体,作为可溶性免疫球蛋白-G (IgG) 结合 HA。然而,当抗体作为细胞表面 IgM 表达时,所有三种 IGHV1-69 前体都与 HA 结合。HA 通过种系跨膜 IgM 触发 BCR 相关的酪氨酸激酶信号。识别和病毒中和仅依赖于重链,CR6261 的亲和力成熟仅需要 CDR H1 和 FR3 中的七个氨基酸来恢复全部活性。这些发现提供了对导致产生流感广泛中和抗体的初始事件的深入了解,为设计引发此类抗体的疫苗提供了信息,并为包括人类免疫缺陷病毒/艾滋病在内的其他传染病提供了相关模型。这些数据进一步表明,选定的免疫球蛋白基因识别特定的蛋白质结构“模式”,为进一步的亲和力成熟提供了基础。