Suppr超能文献

从轨迹中进行元学习可泛化动力学。

Metalearning Generalizable Dynamics from Trajectories.

作者信息

Li Qiaofeng, Wang Tianyi, Roychowdhury Vwani, Jawed M K

机构信息

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.

Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.

出版信息

Phys Rev Lett. 2023 Aug 11;131(6):067301. doi: 10.1103/PhysRevLett.131.067301.

Abstract

We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns metaknowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bilevel optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned metaknowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a neural gauge to "measure" the physical parameters of an unseen system with observed trajectories. iMODE can be generally applied to a dynamical system of an arbitrary type or number of physical parameters and is validated on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.

摘要

我们提出了可解释的元神经常微分方程(iMODE)方法,以从多个物理参数不同的动力系统轨迹中快速学习可泛化(即不特定于参数)的动力学。iMODE方法通过采用双层优化框架来学习元知识,即动力系统实例力场的函数变化,而无需知道物理参数:外层捕获所研究动力系统实例之间的共同力场形式,内层适应单个系统实例。先验物理知识可以方便地作为归纳偏差嵌入神经网络架构中,例如保守力场和欧几里得对称性。利用学到的元知识,iMODE可以在几秒钟内对一个未见系统进行建模,并反向揭示关于系统物理参数的知识,或者作为一个神经量规,用观测到的轨迹“测量”一个未见系统的物理参数。iMODE可以普遍应用于任意类型或数量物理参数的动力系统,并在双稳、双摆、范德波尔、弹簧和反应扩散系统上得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验