Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, 100871, Beijing, P. R. China.
Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, P. R. China.
Nat Commun. 2023 Aug 25;14(1):5203. doi: 10.1038/s41467-023-41018-x.
Intrinsically disordered proteins (IDPs) play crucial roles in cellular processes and hold promise as drug targets. However, the dynamic nature of IDPs remains poorly understood. Here, we construct a single-molecule electrical nanocircuit based on silicon nanowire field-effect transistors (SiNW-FETs) and functionalize it with an individual disordered c-Myc bHLH-LZ domain to enable label-free, in situ, and long-term measurements at the single-molecule level. We use the device to study c-Myc interaction with Max and/or small molecule inhibitors. We observe the self-folding/unfolding process of c-Myc and reveal its interaction mechanism with Max and inhibitors through ultrasensitive real-time monitoring. We capture a relatively stable encounter intermediate ensemble of c-Myc during its transition from the unbound state to the fully folded state. The c-Myc/Max and c-Myc/inhibitor dissociation constants derived are consistent with other ensemble experiments. These proof-of-concept results provide an understanding of the IDP-binding/folding mechanism and represent a promising nanotechnology for IDP conformation/interaction studies and drug discovery.
无规则蛋白质(IDPs)在细胞过程中发挥着关键作用,并有望成为药物靶点。然而,IDPs 的动态性质仍未得到很好的理解。在这里,我们构建了一个基于硅纳米线场效应晶体管(SiNW-FET)的单分子电学纳米电路,并将其功能化,使其具有单个无序的 c-Myc bHLH-LZ 结构域,从而能够在单分子水平上进行无标记、原位和长期测量。我们使用该设备研究 c-Myc 与 Max 和/或小分子抑制剂的相互作用。我们观察到 c-Myc 的自折叠/去折叠过程,并通过超灵敏的实时监测揭示其与 Max 和抑制剂的相互作用机制。我们在 c-Myc 从无结合状态到完全折叠状态的转变过程中捕获了一个相对稳定的结合中间体。由此得出的 c-Myc/Max 和 c-Myc/抑制剂的解离常数与其他整体实验一致。这些概念验证结果提供了对 IDP 结合/折叠机制的理解,并代表了一种有前途的纳米技术,可用于 IDP 构象/相互作用研究和药物发现。