Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Nano Lett. 2024 Sep 18;24(37):11641-11647. doi: 10.1021/acs.nanolett.4c03220. Epub 2024 Sep 9.
Single-molecule fluorescence has revealed a wealth of biochemical processes but does not give access to submillisecond dynamics involved in transient interactions and molecular dynamics. Here we overcome this bottleneck and demonstrate record-high photon count rates of >10 photons/s from single plasmon-enhanced fluorophores. This is achieved by combining two conceptual novelties: first, we balance the excitation and decay rate enhancements by the antenna's volume, resulting in maximum fluorescence intensity. Second, we enhance the triplet decay rate using a multicomponent surface chemistry that minimizes microsecond blinking. We demonstrate applications to two exemplary molecular processes: we first reveal transient encounters and hybridization of DNA with a 1 μs temporal resolution. Second, we exploit the field gradient around the nanoparticle as a molecular ruler to reveal microsecond intramolecular dynamics of multivalent complexes. Our results pave the way toward real-time microsecond studies of biochemical processes using an implementation compatible with existing single-molecule fluorescence methods.
单分子荧光已揭示了丰富的生化过程,但无法获得涉及瞬时相互作用和分子动力学的亚毫秒级动力学信息。在这里,我们克服了这一瓶颈,实现了>10 个光子/秒的创纪录的单等离子体增强荧光团的光子计数率。这是通过结合两个新概念实现的:首先,我们通过天线的体积平衡激发和衰减速率的增强,从而获得最大的荧光强度。其次,我们使用多组分表面化学来增强三重态衰减速率,从而最大限度地减少微秒闪烁。我们展示了两种典型分子过程的应用:我们首先揭示了 DNA 与 1 μs 时间分辨率的瞬时相互作用和杂交。其次,我们利用纳米颗粒周围的场梯度作为分子标尺来揭示多价配合物的微秒级分子内动力学。我们的结果为使用与现有单分子荧光方法兼容的实现方案实时研究生物化学过程铺平了道路。