Vladimirov Igor G
School of Engineering, Australian National University, Canberra, ACT 2601, Australia.
Entropy (Basel). 2023 Aug 8;25(8):1179. doi: 10.3390/e25081179.
This paper is concerned with variational methods for open quantum systems with Markovian dynamics governed by Hudson-Parthasarathy quantum stochastic differential equations. These QSDEs are driven by quantum Wiener processes of the external bosonic fields and are specified by the system Hamiltonian and system-field coupling operators. We consider the system response to perturbations in these operators and introduce a transverse Hamiltonian which encodes the propagation of the perturbations through the unitary system-field evolution. This approach provides an infinitesimal perturbation analysis tool which can be used for the development of optimality conditions in quantum control and filtering problems. As performance criteria, such settings employ quadratic (or more complicated) cost functionals of the system and field variables to be minimized over the energy and coupling parameters of system interconnections. We demonstrate an application of the transverse Hamiltonian variational approach to a mean square optimal coherent quantum filtering problem for a measurement-free field-mediated cascade connection of a quantum system with a quantum observer.
本文关注具有由哈德森 - 帕尔塔萨拉蒂量子随机微分方程所描述的马尔可夫动力学的开放量子系统的变分方法。这些量子随机微分方程由外部玻色子场的量子维纳过程驱动,并由系统哈密顿量和系统 - 场耦合算子确定。我们考虑系统对这些算子中微扰的响应,并引入一个横向哈密顿量,它编码了微扰通过幺正系统 - 场演化的传播。这种方法提供了一种无穷小扰动分析工具,可用于量子控制和滤波问题中最优性条件的推导。作为性能准则,此类设置采用系统和场变量的二次(或更复杂)代价泛函,以便在系统互连的能量和耦合参数上进行最小化。我们展示了横向哈密顿量变分方法在一个无测量的场介导的量子系统与量子观测器级联连接的均方最优相干量子滤波问题中的应用。