Haack Géraldine, Joye Alain
Department of Applied Physics, University of Geneva, Chemin de Pinchat 22, 1227 Carouge, Genève Switzerland.
Univ. Grenoble Alpes, CNRS, Institut Fourier, 38000 Grenoble, France.
J Stat Phys. 2021;183(1):17. doi: 10.1007/s10955-021-02752-y. Epub 2021 Apr 13.
This paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete examples corresponding to realistic open quantum systems.
本文致力于对量子重置模型的林德布拉德算子进行分析,描述受随机重置影响的三方量子系统的有效动力学。我们考虑由三个独立子系统组成的链,通过哈密顿项耦合。链两端的两个子系统由重置林德布拉德算子相互独立地驱动,而中心系统由哈密顿量驱动。在耦合项的一般假设下,我们证明了受扰重置林德布拉德算子存在唯一的稳态,且该稳态在耦合常数上是解析的。我们进一步分析了描述向稳态趋近的相应CPTP马尔可夫半群的长时间动力学。我们用对应于实际开放量子系统的具体例子来说明这些结果。