Suppr超能文献

编程教育分析中学生的学习行为:来自熵和社区检测的见解

Students' Learning Behaviour in Programming Education Analysis: Insights from Entropy and Community Detection.

作者信息

Mai Tai Tan, Crane Martin, Bezbradica Marija

机构信息

School of Computing, Dublin City University, Collins Ave Ext, Whitehall, D09 Y074 Dublin, Ireland.

ADAPT Center for Digital Content Technology, D02 PN40 Dublin, Ireland.

出版信息

Entropy (Basel). 2023 Aug 17;25(8):1225. doi: 10.3390/e25081225.

Abstract

The high dropout rates in programming courses emphasise the need for monitoring and understanding student engagement, enabling early interventions. This activity can be supported by insights into students' learning behaviours and their relationship with academic performance, derived from student learning log data in learning management systems. However, the high dimensionality of such data, along with their numerous features, pose challenges to their analysis and interpretability. In this study, we introduce entropy-based metrics as a novel manner to represent students' learning behaviours. Employing these metrics, in conjunction with a proven community detection method, we undertake an analysis of learning behaviours across higher- and lower-performing student communities. Furthermore, we examine the impact of the COVID-19 pandemic on these behaviours. The study is grounded in the analysis of empirical data from 391 Software Engineering students over three academic years. Our findings reveal that students in higher-performing communities typically tend to have lower volatility in entropy values and reach stable learning states earlier than their lower-performing counterparts. Importantly, this study provides evidence of the use of entropy as a simple yet insightful metric for educators to monitor study progress, enhance understanding of student engagement, and enable timely interventions.

摘要

编程课程的高辍学率凸显了监测和了解学生参与度以便进行早期干预的必要性。学习管理系统中的学生学习日志数据所提供的关于学生学习行为及其与学业成绩关系的见解,可以为这项活动提供支持。然而,这类数据的高维度以及众多特征,给其分析和可解释性带来了挑战。在本研究中,我们引入基于熵的指标,作为一种表示学生学习行为的新方法。利用这些指标,结合一种经过验证的社区检测方法,我们对成绩较高和较低的学生群体的学习行为进行了分析。此外,我们还研究了新冠疫情对这些行为的影响。该研究基于对391名软件工程专业学生三个学年的实证数据的分析。我们的研究结果表明,成绩较高群体的学生通常熵值波动较小,并且比成绩较低的学生更早达到稳定的学习状态。重要的是,这项研究证明了熵作为一种简单而有洞察力的指标,可供教育工作者监测学习进度、增进对学生参与度的理解并进行及时干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7e1/10453761/695f372096c5/entropy-25-01225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验