Alves João R, Berg Lucas A, Gaio Evandro D, Rocha Bernardo M, de Queiroz Rafael A B, Dos Santos Rodrigo W
Department of Education, Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso 78895-150, Brazil.
Department of Computer Science, Federal Univesity of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
Entropy (Basel). 2023 Aug 18;25(8):1229. doi: 10.3390/e25081229.
This paper presents a novel hybrid approach for the computational modeling of cardiac perfusion, combining a discrete model of the coronary arterial tree with a continuous porous-media flow model of the myocardium. The constructive constrained optimization (CCO) algorithm captures the detailed topology and geometry of the coronary arterial tree network, while Poiseuille's law governs blood flow within this network. Contrast agent dynamics, crucial for cardiac MRI perfusion assessment, are modeled using reaction-advection-diffusion equations within the porous-media framework. The model incorporates fibrosis-contrast agent interactions and considers contrast agent recirculation to simulate myocardial infarction and Gadolinium-based late-enhancement MRI findings. Numerical experiments simulate various scenarios, including normal perfusion, endocardial ischemia resulting from stenosis, and myocardial infarction. The results demonstrate the model's efficacy in establishing the relationship between blood flow and stenosis in the coronary arterial tree and contrast agent dynamics and perfusion in the myocardial tissue. The hybrid model enables the integration of information from two different exams: computational fractional flow reserve (cFFR) measurements of the heart coronaries obtained from CT scans and heart perfusion and anatomy derived from MRI scans. The cFFR data can be integrated with the discrete arterial tree, while cardiac perfusion MRI data can be incorporated into the continuum part of the model. This integration enhances clinical understanding and treatment strategies for managing cardiovascular disease.
本文提出了一种用于心脏灌注计算建模的新型混合方法,该方法将冠状动脉树的离散模型与心肌的连续多孔介质流动模型相结合。构造约束优化(CCO)算法捕捉冠状动脉树网络的详细拓扑结构和几何形状,而泊肃叶定律则支配该网络内的血流。对于心脏磁共振成像灌注评估至关重要的造影剂动力学,在多孔介质框架内使用反应-平流-扩散方程进行建模。该模型纳入了纤维化-造影剂相互作用,并考虑造影剂再循环以模拟心肌梗死和基于钆的延迟强化磁共振成像结果。数值实验模拟了各种场景,包括正常灌注、狭窄导致的心内膜缺血和心肌梗死。结果表明该模型在建立冠状动脉树中的血流与狭窄以及心肌组织中的造影剂动力学与灌注之间的关系方面具有有效性。该混合模型能够整合来自两种不同检查的信息:从CT扫描获得的心脏冠状动脉的计算血流储备分数(cFFR)测量值以及从MRI扫描得出的心脏灌注和解剖结构。cFFR数据可以与离散动脉树整合,而心脏灌注MRI数据可以纳入模型的连续部分。这种整合增强了对心血管疾病管理的临床理解和治疗策略。