Dávila María J, Mayer Christian
Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany.
Life (Basel). 2023 Aug 12;13(8):1735. doi: 10.3390/life13081735.
The chemical evolution of biomolecules was clearly affected by the overall extreme environmental conditions found on Early Earth. Periodic temperature changes inside the Earth's crust may have played a role in the emergence and survival of functional peptides embedded in vesicular compartments. In this study, all-atom molecular dynamic (MD) simulations were used to elucidate the effect of temperature on the properties of functionalized vesicle membranes. A plausible prebiotic system was selected, constituted by a model membrane bilayer from an equimolar mixture of long-chain fatty acids and fatty amines, and an octapeptide, KSPFPFAA, previously identified as an optimized functional peptide in an evolution experiment. This peptide tends to form the largest spontaneous aggregates at higher temperatures, thereby enhancing the pore-formation process and the eventual transfer of essential molecules in a prebiotic scenario. The analyses also suggest that peptide-amphiphile interactions affect the structural properties of the membrane, with a significant increase in the degree of interdigitation at the lowest temperatures under study.
生物分子的化学演化显然受到早期地球上发现的整体极端环境条件的影响。地壳内部的周期性温度变化可能在包裹于囊泡隔室中的功能性肽的出现和存活中发挥了作用。在本研究中,全原子分子动力学(MD)模拟被用于阐明温度对功能化囊泡膜性质的影响。选择了一个合理的前生物系统,它由长链脂肪酸和脂肪胺的等摩尔混合物构成的模型膜双层以及一种八肽KSPFPFAA组成,该八肽先前在一项演化实验中被鉴定为优化的功能性肽。这种肽在较高温度下倾向于形成最大的自发聚集体,从而在益生元场景中增强成孔过程和必需分子的最终转运。分析还表明,肽 - 两亲分子相互作用会影响膜的结构性质,在所研究的最低温度下叉指化程度会显著增加。