Suppr超能文献

一种用于连续介电泳分离活人和非活人 T 细胞的流动式微流控芯片。

A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells.

机构信息

Department of Chemical Engineering, University of Bath, Bath, UK.

Centre for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath, UK.

出版信息

Electrophoresis. 2022 Feb;43(3):501-508. doi: 10.1002/elps.202100031. Epub 2021 Nov 30.

Abstract

Effective methods for rapid sorting of cells according to their viability are critical in T cells based therapies to prevent any risk to patients. In this context, we present a novel microfluidic device that continuously separates viable and non-viable T-cells according to their dielectric properties. A dielectrophoresis (DEP) force is generated by an array of castellated microelectrodes embedded into a microfluidic channel with a single inlet and two outlets; cells subjected to positive DEP forces are drawn toward the electrodes array and leave from the top outlet, those subjected to negative DEP forces are repelled away from the electrodes and leave from the bottom outlet. Computational fluid dynamics is used to predict the device separation efficacy, according to the applied alternative current (AC) frequency, at which the cells move from/to a negative/positive DEP region and the ionic strength of the suspension medium. The model is used to support the design of the operational conditions, confirming a separation efficiency, in terms of purity, of 96% under an applied AC frequency of 1.5 × 10 Hz and a flow rate of 20 μl/h. This work represents the first example of effective continuous sorting of viable and non-viable human T-cells in a single-inlet microfluidic chip, paving the way for lab-on-a-chip applications at the point of need.

摘要

根据细胞活力对细胞进行快速分类的有效方法对于基于 T 细胞的治疗至关重要,可防止对患者造成任何风险。在这种情况下,我们提出了一种新颖的微流控设备,该设备可根据其介电特性连续分离有活力和无活力的 T 细胞。通过在具有单个入口和两个出口的微流道中嵌入的一系列 castellated 微电极产生介电泳(DEP)力;将经受正 DEP 力的细胞吸引到电极阵列并从顶部出口离开,将经受负 DEP 力的细胞从电极排斥并从底部出口离开。使用计算流体动力学根据施加的交流电(AC)频率来预测设备的分离效率,细胞从/移至负/正 DEP 区以及悬浮介质的离子强度的频率。该模型用于支持操作条件的设计,在施加的 AC 频率为 1.5×10 Hz 和流速为 20 μl/h 的情况下,以 96%的纯度分离效率证明了该方法的有效性。这项工作代表了在单个入口微流控芯片中有效连续分离有活力和无活力的人类 T 细胞的首例实例,为在需求点进行芯片实验室应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验